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Abstract. The first-order theory of rewriting is a decidable theory for
linear variable-separated rewrite systems. The decision procedure is based
on tree automata techniques and recently we completed a formalization
in the Isabelle proof assistant. In this paper we present a certificate
language that enables the output of software tools implementing the de-
cision procedure to be formally verified. To show the feasibility of this
approach, we present FORT-h, a reincarnation of the decision tool FORT
with certifiable output, and the formally verified certifier FORTify.

1 Introduction

Many properties of rewrite systems can be expressed as logical formulas in the
first-order theory of rewriting. This theory is decidable for the class of linear
variable-separated rewrite systems, which includes all ground rewrite systems.
The decision procedure is based on tree automata techniques and goes back to
Dauchet and Tison [7]. It is implemented in FORT [17,18]. FORT takes as input
one or more rewrite systemsR0,R1, . . . and a formula ϕ, and determines whether
or not the rewrite systems satisfy the property expressed by ϕ, in which case it
reports yes or no. FORT may not reach a conclusion due to limited resources.

For properties related to confluence and termination, designated competitions
(CoCo [15], termCOMP [9]) of software tools take place regularly. Occasionally,
yes/no conflicts appear. Since the participating tools typically couple a plethora
of techniques with sophisticated search strategies, human inspection of the out-
put of tools to determine the correct answer is often not feasible. Hence certified
categories were created in which tools must output a formal certificate. This
certificate is verified by CeTA [21], an automatically generated Haskell program
using the code generation feature of Isabelle. This requires not only that the
underlying techniques are formalized in Isabelle, but the formalization must be
executable for code generation to apply. During the time-consuming formaliza-
tion process, mistakes in papers are sometimes brought to light.
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Since 2017 we are concerned with the question of how to ensure the correct-
ness of the answers produced by FORT. The certifier CeTA supports a great many
techniques for establishing concrete properties like termination and confluence,
but the formalizations in the underlying Isabelle Formalization of Rewriting
(IsaFoR)3 are orthogonal to the ones required for supporting the decision proce-
dure underlying FORT. We recently completed the formalization of the automata
constructions involved in the decision procedure [14]. Earlier fragments were de-
scribed in [8, 13]. In this paper we put these efforts to the test. More precisely,
we

1. present a certificate language which is rich enough to express the various au-
tomata operations in decision procedures for the first-order theory of rewrit-
ing as well as numerous predicate symbols that may appear in formulas in
this theory,

2. describe the tasks required to turn the formalization described in [14] into
verified code to check certificates within reasonable time,

3. present a new reincarnation of FORT in Haskell, named FORT-h, which is
capable of producing certificates.

The remainder of the paper is organized as follows. The next section briefly
recapitulates the first-order theory of rewriting and the variant of the decision
procedure described in [14]. Sections 3 and 4 describe the representation of for-
mulas in certificates and the certificate language. In Section 5 we describe how
certificates are validated by FORTify, the verified Haskell program obtained from
the Isabelle formalization. Section 6 describes FORT-h. Experimental results are
presented in Section 7, before we conclude in Section 8.

2 Preliminaries

Familiarity with term rewriting [2] and tree automata [6] is useful, but we briefly
recall important definitions and notation that we use in the remainder.

Terms T (F ,V) are constructed from a signature F , consisting of function
symbols with fixed arities, and a set of variables V. A term rewrite system (TRS
for short) R consists of rewrite rules `→ r between terms ` and r. Instead of the
usual restrictions ` /∈ V and Var(r) ⊆ Var(`), we require Var(`)∩Var(r) = ∅. Here
Var(t) denotes the set of variables in a term t. Moreover, ` and r are assumed to
be linear terms (i.e., variables occur at most once). The conditions on the rewrite
rules are necessary to ensure decidability of the first-order theory of rewriting for
these linear variable-separated TRSs. The (one-step) rewrite relation of a TRS
R is denoted by →R. A term t is ground if Var(t) = ∅. The set of ground terms
is denoted by T (F).

The first-order theory of rewriting is defined over a language L containing
the predicate symbols →, →∗, =, and many more. As models, we consider finite
linear variable-separated TRSs R over signatures F such that T (F) is non-
empty. The set T (F) serves as domain for the variables in formulas over L. The

3 http://cl-informatik.uibk.ac.at/software/ceta/
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interpretation of the predicate symbol → in R is the one-step rewrite relation
→R over T (F), →∗ denotes the restriction of →∗R to terms in T (F), and = is
interpreted as the identity relation on T (F). Since we use ground terms as car-
rier, formulas in the first-order theory of rewriting express properties on ground
terms. For instance, the following formula ϕ expresses the property of having
unique normal forms (UNR):

∀ s∀ t∀u (s→∗ t ∧ ¬∃ v (t→ v) ∧ s→∗ u ∧ ¬∃ v (u→ v) =⇒ t = u)

To use ϕ for establishing UNR for arbitrary terms (i.e., terms in T (F ,V)) two
additional constant symbols need to be added to the signature [18]. (More on this
in Section 8.) Additional predicates in L increase the expressive power and also
allow expressing properties more compactly. For instance, we can write NF(t)
for ¬∃ v (t→ v) and s→! t for s→∗ t ∧ ¬∃ v (t→ v). In Section 3 we present a
grammar that describes the available constructions for predicates. All predicates
that can be represented using these constructions are supported in our decision
procedure.

The decision procedure is based on tree automata that recognize relations
on ground terms. Here we give a brief summary. More information can be found
in [6] and [14]. A tree automaton A = (F , Q,Qf , ∆) consists of a finite signature
F , a finite set Q of states, disjoint from F , a subset Qf ⊆ Q of final states,
and a set of transition rules ∆. Transition rules have one of the following two
shapes: f(p1, . . . , pn) → q with f ∈ F and p1, . . . , pn, q ∈ Q, or p → q with
p, q ∈ Q. The latter are called epsilon transitions. Transition rules can be viewed
as rewrite rules between ground terms in T (F∪Q). The induced rewrite relation
is denoted by →∆ or →A. A ground term t ∈ T (F) is accepted by A if t→∗∆ q
for some q ∈ Qf . The set of all accepted terms is denoted by L(A) and a set L
of ground terms is regular if L = L(A) for some tree automaton A.

We encode n-tuples with n > 1 of ground terms as terms over an enriched
signature, as follows. We write F (n) for the signature (F ∪ {⊥})n where ⊥ /∈ F
is a fresh constant. The arity of a symbol f1 · · · fn ∈ F (n) is the maximum of
the arities of f1, . . . , fn. The encoding of terms t1, . . . , tn ∈ T (F) is the unique
term 〈t1, . . . , tn〉 ∈ T (F (n)) such that Pos(〈t1, . . . , tn〉) = Pos(t1)∪· · ·∪Pos(tn)
and 〈t1, . . . , tn〉(p) = f1 · · · fn where fi = ti(p) if p ∈ Pos(ti) and fi = ⊥
otherwise, for all p ∈ Pos(〈t1, . . . , tn〉) and 1 6 i 6 n. As an example, for the
terms s = f(g(a), f(b, b)), t = g(g(a)), and u = f(b, g(a)) we obtain 〈s, t, u〉 =
fgf(ggb(aa⊥), f⊥g(b⊥a, b⊥⊥)). An n-ary relation on ground terms is regular if
its encoding is accepted by a tree automaton operating on terms in T (F (n)).
Such an automaton is called an RRn automaton and regular n-ary relations are
called RRn relations. The i-th cylindrification of an RRn relation R over T (F) is
the RRn+1 relation {(t1, . . . , ti−1, u, ti, . . . , tn) | (t1, . . . , tn) ∈ R and u ∈ T (F)}.

Besides RRn automata, the decision procedure makes use of ground tree
transducers (GTTs for short). A GTT is a pair G = (A,B) of tree automata
over the same signature F . A pair (s, t) of ground terms in T (F) is accepted by
G if s →∗A u →∗

B t for some term u ∈ T (F ∪ Q). Here Q is the combined set of
states of A and B. The set of all such pairs is denoted by L(G). We denote by
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La(G) the set of all pairs (s, t) such that s →∗A q →∗
B t for some state q ∈ Q. A

binary relation R on ground terms is a(n anchored) GTT relation if there exists
a GTT G such that R = L(G) (R = La(G)). The decision procedure for the first-
order theory of rewriting described in [7] and implemented in FORT uses GTTs,
the formalized variant described in [14] uses anchored GTTs (aGTTs), which
have better closure properties. Both are supported in our certificate language,
but FORT-h and FORTify use anchored GTTs since they permit us to model
more predicates while reducing the need for ad-hoc constructions that need to
be turned into executable (verified) code.

The decision procedure for the first-order theory of rewriting constructs RRn
automata for the subformulas in a bottom-up fashion. GTTs (aGTTs) come
into play for some of the atomic subformulas consisting of predicate symbols and
variables. Closure properties take care of the logical structure of formulas. A final
emptiness check determines whether the formula is satisfied for the TRS given
as input to the decision procedure. Rather than formally stating the properties
involved, we illustrate the decision procedure on an example.

Example 1. Consider the formula ϕ = ∀ s∃ t (s →∗ t ∧ NF(t)), which expresses
the normalization property of TRSs. To determine whether a TRS R over a
signature F satisfies ϕ, we first construct an RR1 automaton A1 that accepts
the ground normal forms in T (F), using an algorithm first described in [5] and
recently formalized in [13]. For the subformula s→∗ t we construct a GTT G1 for
the parallel rewrite relation−→‖ R. Since GTT relations are effectively closed under
transitive closure (while RR2 relations are not), we obtain a GTT G2 for →∗R.
This GTT is transformed into an RR2 automaton A2. (In the formalized decision
procedure described in [14], an RR2 automaton for →∗ is constructed from an
anchored GTT for the root step relation→ε

R, using suitable closure properties of
anchored GTT and RR2 relations.) We cylindrify the RR1 automaton A1 into an
RR2 automaton A3 that accepts T (F)×NFR. A product construction involving
A2 and A3 produces an RR2 automaton A4 for the subformula s →∗ t ∧ NF(t).
Projection yields an RR1 automaton A5 corresponding to ∃ t (s→∗ t∧NF(t)). So
ϕ holds if and only if L(A5) = T (F). In FORT the ∀ quantifier is transformed into
the equivalent ¬∃¬. Hence complementation is used to obtain an RR1 automaton
A6 and the existential quantifier is implemented using projection. This gives an
RR0 automaton A7 which either accepts the empty relation ∅ or the singleton
set {()} consisting of the nullary tuple (). The outermost negation gives rise
to another complementation step. The final RR0 automaton A8 is tested for
emptiness: L(A8) = ∅ if and only the TRS R does not satisfy ϕ.

3 Formulas

The first step in the certification process is to translate formulas in the first-order
theory of rewriting into a format suitable for further processing. We adopt de
Bruijn indices [4] to avoid alpha renaming.
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Example 2. Consider the formula

forall s, t, u ([0] s ->* t & [1] s ->* u =>

exists v ([1] t ->* v & [0] u ->* v))

in FORT syntax. It expresses the commutation of two TRSs, indicated by the
indices 0 and 1. Using de Bruijn indices for the term variables s, t, u, v produces

∀ ∀∀ (2→∗0 1 ∧ 2→∗1 0) =⇒ ∃ (2→∗1 0 ∧ 1→∗0 0)

We refer to Example 4 for further explanation.

The formal syntax of formulas in certificates is given below. Angle brackets
〈 〉 are used for non-terminal symbols. Here 〈rr2〉 denotes the supported binary
regular relations, which are formally defined after Example 3. Likewise, 〈rr1〉
stands for regular sets (which are identified with unary regular relations).

〈formula〉 ::= (rr1 〈rr1〉 〈term〉) | (rr2 〈rr2〉 〈term〉 〈term〉)
| (and 〈formula〉 ∗ ) | (or 〈formula〉 ∗ ) | (not 〈formula〉)
| (forall 〈formula〉) | (exists 〈formula〉) | (true) | (false)
| (restrict 〈formula〉 ( 〈trs〉+ ))

〈term〉 ::= 〈nat〉 〈trs〉 ::= 〈nat〉 | 〈nat〉 - 〈nat〉 ::= 0 | 1 | 2 | · · ·

De Bruijn indices are used for 〈term〉 variables and 〈nat〉 - denotes a TRS
with index 〈nat〉 in which the left- and right-hand sides of the rules have been
swapped. The class of linear variable-separated TRSs is closed under this op-
eration. We use it to represent the conversion relation ↔∗ of a TRS R as the
reachability relation →∗ induced by the TRS R∪R−.

Example 3. The commutation property in Example 2 is rendered as follows:

(forall (forall (forall (or (not (and (rr2 (step* (0)) 2 1)

(rr2 (step* (1)) 2 0))) (exists (and (rr2 (step* (1)) 2 0)

(rr2 (step* (0)) 1 0)))))))

Here (step* (0)) denotes the RR2 relation→∗ induced by the first TRS (which
is indexed by 0) and (rr2 (step* (1)) 2 0) represents the subformula [1] t

->* v of the FORT formula in Example 2.

We continue with the certificate syntax of RR1 and RR2 relations:

〈rr1〉 ::= (terms) | (nf ( 〈trs〉+ )) | (inf 〈rr2〉) | (proj (1 | 2) 〈rr2〉)
| (union 〈rr1〉 〈rr1〉) | (inter 〈rr1〉 〈rr1〉) | (diff 〈rr1〉 〈rr1〉)

〈rr2〉 ::= (gtt 〈gtt〉 〈pos〉 〈num〉) | (product 〈rr1〉 〈rr1〉) | (id 〈rr1〉)
| (union 〈rr2〉 〈rr2〉) | (inter 〈rr2〉 〈rr2〉) | (diff 〈rr2〉 〈rr2〉)
| (comp 〈rr2〉 〈rr2〉) | (inverse 〈rr2〉)
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〈pos〉 ::= >= | e | > 〈num〉 ::= >= | 1 | >

〈gtt〉 ::= (root-step ( 〈trs〉+ )) | (inverse 〈gtt〉) | (union 〈gtt〉 〈gtt〉)
| (acomp 〈gtt〉 〈gtt〉) | (gcomp 〈gtt〉 〈gtt〉) | (inter 〈gtt〉 〈gtt〉)
| (acomplement 〈gtt〉) | (atc 〈gtt〉) | (gtc 〈gtt〉)

Here (terms) refers to T (F), (nf ( 〈trs〉 + )) to the normal forms (NF) in-
duced by the union of the underlying TRSs, and (inf 〈rr2〉) to the infinity
predicate (INFR) which is satisfied by all terms having infinitely many succes-
sors with respect to the relation R. Furthermore, (proj (1 | 2) 〈rr2〉) denotes
projection (π) to the first (second) argument, (gtt 〈gtt〉 〈pos〉 〈num〉) the trans-
formation of a GTT relation into an RR2 relation with corresponding context
closure (cf. [14, Section 3]), (id 〈rr1〉) the identity relation on the underlying set,
and (gtc 〈gtt〉) ((atc 〈gtt〉)) the (anchored) transitive closure of the underlying
(anchored) GTT relation.

The constructs defined above closely correspond to the formalized closure
operations for the predicates in the first-order theory of rewriting, reported in [14]
and summarized below:

A ::= →ε | A− | A ∪A | A+ | A+̂ | A ◦A | A ◦̂ A | Ac | A ∩A
R ::= A | Rn

p | R ∪R | R ∩R | R− | T × T | =T

T ::= T (F) | NF | INFR | T ∪ T | T ∩ T | T c | π1(R) | π2(R)

n ::= > | 1 | > p ::= > | ε | >

Here A are anchored GTT relations (〈gtt〉), R are RR2 relations (〈rr2〉), and T
are regular sets of ground terms (〈rr1〉).

For convenience of tool authors, we add a few other constructs to 〈rr2〉. The
certifier expands these to a sequence of basic constructs given above.

〈rr2〉 ::= · · · | (step ( 〈trs〉+ )) | (step= ( 〈trs〉+ ))

| (step+ ( 〈trs〉+ )) | (step* ( 〈trs〉+ )) | (equality)
| (parallel-step ( 〈trs〉+ )) | (root-step+ ( 〈trs〉+ ))

| (non-root-step ( 〈trs〉+ )) | (join ( 〈trs〉+ ))

The complete list can be obtained from the accompanying website.

4 Certificates

A certificate for a first-order formula ϕ explains how the corresponding RRn
automaton is constructed. We adopt a line-oriented natural deduction style. The
automata are implicit. This is a deliberate design decision to keep certificates
small. More importantly, it avoids having to check equivalence of finite tree
automata, which is EXPTIME-complete [6, Section 1.7].

〈certificate〉 ::= ( 〈item〉 〈inference〉 〈formula〉 〈info〉 ∗ ) 〈certificate〉
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| (empty 〈item〉) | (nonempty 〈item〉)

〈item〉 ::= 〈nat〉 〈info〉 ::= (size 〈nat〉 〈nat〉 〈nat〉) | · · ·

〈inference〉 ::= (rr1 〈rr1〉 〈term〉) | (rr2 〈rr2〉 〈term〉 〈term〉)
| (and 〈item〉 ∗ ) | (or 〈item〉 ∗ ) | (not 〈item〉)
| (exists 〈item〉) | (nnf 〈item〉) | · · ·

Currently the 〈info〉 field only serves as an interface between the tool (which
provides the certificate) and the certifier to compare the sizes of the constructed
automata. In the future we plan to extend this field with concrete automata.
This allows to test language equivalence of a tree automaton computed by a tool
that supports our certificate language and the one reconstructed by FORTify,
thereby providing tool authors with a mechanism to trace buggy constructions
in case a certificate is rejected.

We revisit Example 1 to illustrate the construction of certificates.

Example 4. The formula ϕ = ∀ s∃ t (s →∗ t ∧ NF(t)) expressing normalization
is rendered as ϕ′ = ∀∃(1→∗0 0 ∧ 0 ∈ NF[0]) in de Bruijn notation. Here 1 refers
to the variable s, the second and third occurrences of 0 refer to t, and the last
occurrence of 0 refer to the first (and only) TRS, which has index 0. We construct
the certificate bottom-up, to mimic the decision procedure. The first line is for
NF[0]:

(0 (rr1 (nf (0)) 0) (rr1 (nf (0)) 0))

The components can be read as follows:

– 〈item〉 = 0 denotes the first step in our proof,
– 〈inference〉 = rr1 (nf (0)) 0 construct the automaton that accepts the

normal forms and keeps track of the variable 0,
– 〈formula〉 = rr1 (nf (0)) 0 denotes the subformula 0 ∈ NF[0]; it is sat-

isfiable if and only if the automaton constructed using the description in
〈inference〉 is not empty.

The apparent redundancy will disappear when we continue. We proceed by ex-
pressing the relation→∗0 and subsequently make sure that the second component
of →∗0 is in normal form:

(1 (rr2 (step* (0)) 1 0) (rr2 (step* (0)) 1 0))

(2 (and (1 0)) (and ((rr2 (step* (0)) 1 0) (rr1 (nf (0)) 0))))

Line 1 is similar to line 0. The inference step and 1 0 in line 2 constructs an RR2

automaton that accepts the intersection of the relations modeled in lines 1 and
0. This automaton corresponds to A4 in Example 1. The cylindrification step
from A1 to A3 in Example 1 is left implicit. We continue with the projection of
variable 0 and afterwards complement the resulting automaton. This is done by
an exists followed by a not inference step:
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(3 (exists 2) (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0)))))

(4 (not 3) (not (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0))))))

The inference steps until this point describe the construction of A6 in Example 1.
We complete the certificate by introducing the remaining operators:

(5 (exists 4) (exists (not (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0)))))))

(6 (not 5) (not (exists (not (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0))))))))

(7 (nnf 6) (forall (exists (and ((rr2 (step* (0)) 1 0)

(rr1 (nf (0)) 0))))))

(nonempty 7)

The nnf inference step does not modify the tree automaton computed in step
6 (which corresponds to A8 in Example 1) but checks the equivalence of the
formula in line 6 with the one of line 7, which corresponds to the input formula
ϕ′. The equivalence check incorporates ∀ elimination, negation normal form,
and associativity, commutativity and idempotency of ∧ and ∨. In the future
we might add support for additional equivalences in first-order logic. The final
step (nonempty 7) checks that L(A8) 6= ∅. So this certificate claims that the
input TRS is normalizing. For TRSs that do not satisfy ϕ, the final line in the
certificate would be (empty 7).

In the previous example we intentionally skipped over some details to convey
the underlying intuition. First of all, the 〈rr2〉 construct (step* (0)) is derived
and internally unfolded via (anchored) GTTs into

(gtt (gtc (root-step 0)) >= >)

Starting from an anchored GTT that accepts the root step relation induced
by the first (and only) TRS in the list, an application of the GTT transitive
closure operation followed by a multi-hole context closure operation with at least
one hole that may appear in any position, an RR2 automaton that accepts the
relation →∗0 is constructed. We also mentioned that cylindrification is implicit.
The same holds for the projection operation that is used in the exists inference
steps. A projection takes place in the first component if the variable 0 is present
in the list of variables, otherwise the inference step preserves the automaton.
This approach is sound as variables indicate the relevant components of the RRn
automaton. Thanks to the de Bruijn representation, the innermost quantifier
refers to variable 0, the first component in the given RRn automaton. However
we must keep track of all variables occurring in the surrounding formula and
update that list accordingly.

5 FORTify

The example in the preceding section makes clear that a certificate can be viewed
as a recipe for the certifier to perform certain operations on automata and for-
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mulas to confirm the final (non-)emptiness claim. In particular, checking a cer-
tificate is expensive because the decision procedure for the first-order theory is
replayed using code-generated operations from a verified version of the decision
procedure. In this section we describe the steps we performed to turn the Is-
abelle formalization of the decision procedure described in [14] into our certifier
FORTify.

We use the FOL-Fitting library [3], which is part of the Archive of Formal
Proofs,4 to connect the first-order theory of rewriting and first-order logic. The
translation is more or less straightforward. We interpret RR1 constructions as
predicates and RR2 construction as relations in first-order logic and prove both
interpretations to be semantically equivalent:

lemma eval formula F Rs α f =
eval α undefined (for eval rel F Rs) (form of formula f )

With this equivalence we are able to define the semantics of formulas:

definition formula satisfiable where
formula satisfiable F Rs f ←→ (∃α. range α ⊆ T G F ∧

eval formula F Rs α f )

definition formula unsatisfiable where
formula unsatisfiable F Rs fm ←→ (formula satisfiable F Rs fm = False)

definition correct certificate where
correct certificate F Rs claim infs n ≡

(claim = Empty ←→ (formula unsatisfiable (fset F) (map fset Rs)
(fst (snd (snd (infs ! n))))) ∧

claim = Nonempty ←→ formula satisfiable (fset F) (map fset Rs)
(fst (snd (snd (infs ! n)))))

Last but not least we define the important function check certificate which
takes as input a signature, a list of TRSs, a boolean, a formula, and a certificate.
This function first verifies that the given formula and the claim corresponds to
the ones referenced in the certificate and afterwards checks the integrity of the
certificate. The following lemmata, which are formally proved in Isabelle, state
the correctness of the check certificate function:

lemma check certificate F Rs A fm (Certificate infs claim n) = Some B
=⇒ fm = fst (snd (snd (infs ! n))) ∧ A = (claim = Nonempty)

lemma check certificate F Rs A fm (Certificate infs claim n) = Some B
=⇒ (B = True −→ correct certificate F Rs claim infs n) ∧

(B = False −→ correct certificate F Rs (case claim of
Empty ⇒ Nonempty | Nonempty ⇒ Empty) infs n)

4 https://www.isa-afp.org

https://www.isa-afp.org
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The first lemma ensures that our check function verifies that the provided param-
eters fm (formula) and A (answer satisfiable/unsatisfiable) match the formula
and the claim stated in the certificate. The second lemma is the key result. It
states that the check function returns Some True if and only if the certificate
is correct. The only-if case is hidden in the last two lines. More precisely, if the
claim of the certificate is wrong then negating the claim (the first-order theory
of rewriting is complete) leads to a correct certificate. Therefore, if our check
function returns Some None then the certificate is correct after negating the
claim.

Our check function returns None if the global assumptions (the input TRS is
not linear variable-separated, the signature is not empty, etc.) are not fulfilled.
We plan to extend the check certificate function in the near future such that
it reports these kind of errors.

A central part of the formalization is to obtain a trustworthy decision pro-
cedure to verify certificates. Hence we use the code generation facility of Is-
abelle/HOL to produce an executable version of our check certificate func-
tion. Isabelle’s code generation facility is able to derive executable code for our
constructions with the exception of inductively defined sets. In [8, Section 7]
an abstract Horn inference system for finite sets is introduced to overcome this
limitation. We use this framework to obtain executable code for the following
constructions defined as inductive sets:

– reachable and productive states of a tree automaton,
– states of tree automata obtained by the subset construction,
– epsilon transitions for the composition and transitive closure constructions

of (anchored) GTTs,
– an inductive set needed for the tree automaton for the infinity predicate.

At this point we can use Isabelle’s code generation to obtain an executable check
function. However, more effort is needed to obtain an efficient check function.
Checking the certificate in Example 6 below did not terminate after more than
24 hours computation time. We used the profiling capabilities of the Glasgow
Haskell Compiler (GHC) to analyze the generated code. This revealed that most
of the time was spent on checking membership. Since the computed tree au-
tomata can grow very large, the use of lists as underlying data structure for sets
in the generated code is a bottleneck.

To overcome this problem we decided to use the container framework of
Lochbihler [12]. In our case, the setup involved a non-trivial overhead as the
container framework requires multiple class instances for data types used inside
sets. Some of these instances could be derived automatically by the deriving
framework of Sternagel and Thiemann [20]. Afterwards Isabelle’s code generation
was able to generate a check certificate function that uses red-black trees as
underlying data structure for sets.

Sadly, the function was still infeasible for the certificate in Example 6. This
time the power set construction, which is exponential in worst case, turned out
to be the culprit. In this construction we compute the transitive closure of the
present epsilon transitions multiple times. Adding an explicit construction to
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TRSs R0, R1, . . .

formula ϕ

y
es

/
n
o

certifi
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te

4 / error(A)

(B)

Fig. 1. Certificate validation with FORTify.

remove epsilon transitions from tree automata solved this issue. To make a long
story short, after further modifications we were able to verify the certificate for
Example 6 in a little less than 3 minutes, which we consider fast enough for a
first prototype. The resulting code-generated certifier is called FORTify.

The overall design of FORTify is shown in Figure 1. It can be viewed as two
separate modules A and B. Module B is the verified Haskell code base that is gen-
erated by Isabelle’s code generation facility, containing the check certificate

function and the data type declarations for formulas and certificates. To use
this functionality, we wrote a parser which translates strings representing for-
mulas (signatures, TRSs, certificates) to semantically equivalent formulas (sig-
natures, TRSs, certificates) represented in the data types obtained from the
generated code. This was done in Haskell and refers to module A in Figure 1.
Module A accepts formulas in FORT syntax. Hence it also applies the con-
version to the de Bruijn representation. After the translation in module A, the
check certificate function in module B is executed and its output is reported.

Importantly, the code in module A is not verified in Isabelle. Correctness of
FORTify must therefore assume correctness of module A as well as the correct-
ness of the Glasgow Haskell Compiler, which we use to generate a standalone
executable from the generated code.

6 FORT-h

FORT-h is a new decision tool for the first order theory of rewriting. It is a
reimplementation of the decision mode of the previous FORT tool [18] based on
a modified decision procedure. The decision procedure, like the formalization,
is based on anchored GTTs. The new tool is implemented in Haskell whereas
FORT is written in Java.

FORT-h supports all features of FORT while extending the domain of sup-
ported TRSs from left-linear right-ground TRSs to linear variable-separated
ones. While FORT could technically take such TRSs as input, it is unsound
when checking non-ground properties on them.
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FORT-h

TRSs R0, R1, . . .

formula ϕ

yes / no / maybe

certificate

Fig. 2. Interface of FORT-h.

Example 5. To check confluence of the linear variable-separated TRS

g(g(x))→ g(y) a→ g(a)

FORT-h can be called with

> ./fort-h "CR" input.trs

NO

where input.trs is a text file containing the rewrite system. The tool correctly
states that NO the system is not confluent. However, FORT incorrectly identifies
this as confluent due to the lack of support for variables appearing in right-hand
sides of rules.

FORT-h took part in the 2020 edition of the Confluence Competition, com-
peting in five categories: COM, GCR, NFP, UNC and UNR. Even though it does
not support many problems tested in the competition, due to the restriction to
linear variable-separated TRSs, it was able to win the category for most YES
results in UNR. The tool expects as input a formula ϕ and one or more TRSs, as
seen in Figure 2. It then outputs the answer YES or NO depending on whether
ϕ is satisfied or not by the given TRSs. FORT-h may be passed some additional
options:

-c FILE: causes FORT-h to write a certificate to the given FILE,
-i: enables the additional 〈info〉 in the inference steps in the certificate,
-v: enables verbose output (e.g. showing the internal formula representation).
-w: enables witness generation.

As an example of the latter, consider Example 5 and the call

> fort-h -w "CR" input.trs

NO

formula body / witness:

(0 (<- o ->*) 1 & ~ 0 (->* o *<-) 1)

0 = g(_00())

1 = g(_01())

So in addition to the answer NO, it also outputs a counter example for the given
formula consisting of the two terms g( 00()) and g( 01()). Here 00 and 01
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are additional constants required to reduce confluence to ground-confluence, and
represent variables. The terms should therefore be read as g(x) and g(y).

Internally FORT-h represents formulas using de Bruijn indices as described
in Section 4. Additionally, universal quantifiers and implications are eliminated,
and negations are pushed as far as possible to the atomic subformulas. The
tool then traverses the formula in a bottom-up fashion, constructing the corre-
sponding anchored GTTs and RRn automata. During this traversal we also keep
track of the steps taken, to construct the certificate if necessary. To improve
performance the automata are cached and reused for equal subformulas. The
tree automaton representing the whole formula is then checked for emptiness. If
the accepted language is empty, FORT-h reports NO, otherwise it outputs YES.

7 Experiments

The experiments described in this section were run on a computer with a Intel(R)
Core(TM) i7-5930K CPU with 6 cores at 3.50GHz.

In the 2019 edition of the Confluence Competition [15] three tools contested
the commutation (COM) category:5 ACP [1], CoLL [19], and FORT. On input
problem COPS #1118 the tools gave conflicting answers.

Example 6. COPS #1118 is about the commutation of the TRSs COPS #669

a→ c f(a)→ b b→ b b→ h(b, h(c, a))

and COPS #695

h(a, a)→ c b→ h(b, a) b→ a f(c)→ c c→ a

To determine the correct answer we use FORT-h to produce a certificate for
ground-confluence by calling

> fort-h -c cert -i "GCom([0],[1])" 1118.trs

YES

This produces the following certificate:

(0 (rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(size 13 53 0))

(1 (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)

(rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)

(size 11 47 0))

(2 (not 1) (not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)))

(3 (and (0 2))

(and ((rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1)))))

(4 (exists 3)

5 https://cops.uibk.ac.at/results/?y=2019&c=COM

https://cops.uibk.ac.at/?q=1118
https://cops.uibk.ac.at/?q=1118
https://cops.uibk.ac.at/?q=669
https://cops.uibk.ac.at/?q=695
https://cops.uibk.ac.at/results/?y=2019&c=COM
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Table 1. FORT(-h) run on GCR formulas with a 60 s timeout (FORTify with 600 s).

YES ∅-time 4 NO ∅-time 4 ∞ total (4) time

(1) FORT-h 36 0.26 s 10 84 0.56 s 16 2 176.23 s (17.6 h)
FORT 37 0.31 s — 82 0.52 s — 3 234.08 s

(2) FORT-h 37 1.48 s 10 84 0.09 s 16 1 122.55 s (17.8 h)
FORT 37 0.32 s — 82 0.50 s — 3 233.20 s

(3) FORT-h 36 0.45 s 6 83 0.08 s 9 3 202.64 s (18.2 h)
FORT 37 0.32 s — 82 0.55 s — 3 236.69 s

(exists (and ((rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1))))))

(5 (exists 4)

(exists (exists (and ((rr2 (comp (inverse (step* (1)))

(step* (0))) 0 1) (not (rr2 (comp (step* (0))

(inverse (step* (1)))) 0 1)))))))

(6 (not 5)

(not (exists (exists (and (

(rr2 (comp (inverse (step* (1))) (step* (0))) 0 1)

(not (rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1))))))))

(7 (nnf 6)

(forall (forall (or (

(not (rr2 (comp (inverse (step* (1))) (step* (0))) 0 1))

(rr2 (comp (step* (0)) (inverse (step* (1)))) 0 1))))))

(nonempty 7)

When passing this certificate to FORTify, after 2 minutes and 57 seconds the
output Certified is produced, so we can be assured that the TRSs do commute.
Note that the inference steps 0 and 1 contain the optional size information. Here
(size k m n) means the underlying RRn automaton constructed by FORT-h
contains k final states, m transitions, and n epsilon transitions.

We also ran some experiments comparing FORT-h to FORT. The problems for
these experiments are taken from the Confluence Problems database (COPS),
and consists of 122 left-linear right-ground TRSs. Note that FORT-h imple-
ments no parallelism, while FORT does. For the first two experiments we chose
a timeout of 60 seconds for the decision tools and 600 seconds for FORTify. The
formulas were taken from the experiments reported in [17]. The first three

∀ s∀ t∀u (s→∗ t ∧ s→∗ u =⇒ t ↓ u) (1)

∀ s∀ t∀u (s→∗ t ∧ s→ u =⇒ t ↓ u) (2)

∀ t∀u (t↔∗ u =⇒ t ↓ u) (3)

denote different but equivalent formulations of ground-confluence (GCR).
The results are shown in Table 1, where the YES (NO) column shows the

number of systems determined to be (non-)ground-confluent together with av-
erage time (∅-time) the tool took. The ∞ column is the number of timeouts.
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To compare overall performance the total time column contains the sum of all
runtimes, including timeouts but excluding the time taken by FORTify. The
4 columns show the numbers of certifiable results as well as the overall time
taken by FORTify (4-time). These results show that, even though they have the
same meaning, the choice of formula has an impact on performance. Interest-
ingly FORT-h is generally faster and can solve more problems than FORT even
though it can not take advantage of any parallelism. This performance advan-
tage is more prominent in systems which are non-confluent. For problems with
the answer YES, FORT can still prove more. The table also shows that FORTify
can only certify a small portion the results. This is due to the performance of
the certifier, since all other problems time out. It is also apparent that formulas
containing conversion (↔∗) are especially slow. No wrong results by the decision
tools where identified.

The second set of formulas represents the normal form property, restricted
to ground terms (GNFP):

∀ t∀u (t↔∗ u ∧ NF(u) =⇒ t→∗ u) (4)

∀ s∀ t∀u (s→ t ∧ s→! u =⇒ t→∗ u) (5)

∀ t (WN(t) =⇒ CR(t)) (6)

The results for these are shown in Table 2. The same pattern is observed, where
even though both can (dis)prove satisfaction for the same formulas, FORT-h is
faster overall.

For the last experiment we test performance on properties over two TRSs.
This is done by checking ground-commutation (GCOM) for all pairs of systems
form the dataset, resulting in 7503 problems. A timeout of 60 seconds was used.
The results, presented in Table 3, show that FORT-h is ahead here as well,
(dis)proving more problems and doing so in significantly less time.

Full details of the experiments are available from the website6 accompanying
this paper. Precompiled binaries of FORT-h and FORTify are available from the
same site. We also present a few additional experiments with FORTify.

6 https://fortissimo.uibk.ac.at/tacas2021

Table 2. FORT(-h) run on GNFP formulas with a 60 s timeout (FORTify with 600 s).

YES ∅-time 4 NO ∅-time 4 ∞ total (4) time

(4) FORT-h 59 0.70 s 31 63 0.07 s 20 0 45.62 s (14.6 h)
FORT 59 0.23 s — 63 0.39 s — 0 38.16 s

(5) FORT-h 59 0.03 s 46 63 0.01 s 50 0 2.55 s (6.3 h)
FORT 59 0.22 s — 63 0.30 s — 0 31.83 s

(6) FORT-h 59 0.05 s 42 62 0.12 s 45 1 70.51 s (8.6 h)
FORT 59 0.31 s — 62 0.64 s — 1 117.86 s

https://fortissimo.uibk.ac.at/tacas2021
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Table 3. FORT(-h) run on GCOM with a 60 s timeout (FORTify with 600 s).

YES ∅-time 4 NO ∅-time 4 ∞ total (4) time

FORT-h 1381 0.16 s 878 6120 0.03 s 3666 2 517.32 s (681.5 h)
FORT 1354 1.46 s — 6100 0.94 s — 49 10670.89 s

8 Conclusion

In this paper we presented FORTify, a certifier for the first-order theory of rewrit-
ing for linear variable-separated TRSs, together with an expressive certificate
language for formulas and proofs. Moreover, a new implementation of the de-
cision procedure for the theory of rewriting, FORT-h, is capable of producing
certificates in this language.

We mention three topics which require further research. First of all, many
certificates produced by FORT-h cannot be validated by the current version of
FORTify within reasonable time. We will further improve the algorithms and
data structures used in the check-certificate function. A natural candidate
for optimization is the transitive closure algorithm generated by Isabelle, which
always takes cubic time. Currently, sharing only takes place in the inference
rules. Expanding this to the individual constructions will be the next step. Also
trimming of anchored GTTs could improve the run time. In the current state of
the formalization only trimming of GTTs is proved to be sound. Profiling will
be used to determine other candidates that are likely to have a large impact on
the validation time.

A second topic for future research is the certification of properties on open
(i.e., non-ground) terms. In [8,16,18] conditions are presented to reduce proper-
ties related to confluence to the corresponding properties on ground terms, by
adding additional constants to the signature. These results need to be formalized
in Isabelle and the certificate language needs to be extended, before FORTify can
be used to certify the corresponding categories in the Confluence Competition.
We plan to define signature extensions directly in formulas, to offer the most
flexibility. A related issue is the support for many-sorted signatures in the Is-
abelle formalization. FORT-h already supports many-sorted TRSs, which is the
format in the GCR category of CoCo.

A third topic is improving the efficiency of FORT-h. We anticipate that sup-
porting parallelism will further speed up FORT-h, especially for large formulas.
Preprocessing techniques that go beyond the mere transformation to negation
normal form will be helpful to obtain equivalent formulas that reduce the size
of the ensuing tree automata in the decision procedure. In [10] similar ideas are
applied to WSkS, in connection with MONA [11].

Acknowledgments. We thank René Thiemann for giving valuable advice on how
to improve the efficiency of the generated code. The comments by the anonymous
reviewers improved the presentation.
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