
Towards a Verified Decision Procedure for Confluence of

Ground Term Rewrite Systems in Isabelle/HOL∗

Bertram Felgenhauer1 Aart Middeldorp1

T. V. H. Prathamesh1 Franziska Rapp1

Department of Computer Science, University of Innsbruck, Austria
{bertam.felgenhauer,aart.middeldorp,venkata.turaga,franziska.rapp}@uibk.ac.at

Abstract

Confluence is a decidable property of ground rewrite systems. We present a formalization
effort in Isabelle/HOL of the decision procedure based on ground tree transducers.

1 Introduction

Confluence is an undecidable property of term rewrite systems. Oyamaguchi [7] was the first to
prove the decidability of confluence for ground rewrite systems. Dauchet, Heuillard, Lescanne,
and Tison [3] presented a simpler decidability proof based on ground tree transducers. Comon,
Godoy, and Nieuwenhuis [2] were the first to prove that confluence of ground rewrite systems is
decidable in polynomial time and Felgenhauer [6] presented a cubic time algorithm.

In [4] the decision procedure of [3] was extended to left-linear right-ground rewrite systems.
Dauchet and Tison [5] showed that the first-order theory of rewriting is decidable for ground
rewrite systems. In this theory properties definable by a first-order formula over rewrite
predicates like → and →∗ are expressible. This includes confluence. The decision procedure
(extended to left-linear right-ground rewrite systems) is implemented in FORT [8]. Ground tree
transducers and their closure properties play a key role in the decision procedure.

Our long-term aim is to formalize the decision procedure in the proof assistant Isabelle/HOL
such that the output of FORT can be certified. In this paper we present a formalization of
ground tree transducers their closure properties. Furthermore, a number of results on the
interplay between rewriting and ground tree transducers are formalized, bringing us close to the
first formalized proof of the decidability of confluence of ground rewrite systems.

Our formalization is based on IsaFoR [9]1. Our own development can be found at http://

cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/. Furthermore most definitions,
theorems, and lemmas directly correspond to the formalization. These are indicated by the 4
symbol, which links to a HTML presentation in the PDF version of the paper.

2 Preliminaries

We assume familiarity with term rewriting and (bottom-up) tree automata. Let R be a ground
term rewrite system (TRS for short) over a signature F , where F contains at least one constant
(which is assured if R 6= ∅.) A tree automaton A = (Q,Qf ,∆) consists of a set of states
Q, a set of final states Qf , and a set of transitions ∆. Ordinary transitions have the form
f(q1, . . . , qn)→ q where q1, . . . , qn and q are states, and f ∈ F has arity n, while ε-transitions

∗This work is supported by the Austrian Science Fund (FWF): project P30301.
1http://cl-informatik.uibk.ac.at/isafor

http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/
http://cl-informatik.uibk.ac.at/isafor

Formalizing GTTs in Isabelle/HOL Felgenhauer, Middeldorp, Prathamesh, Rapp

inductive gtt accept ′ :: (′q , ′f) gtt ⇒ (′f , ′q) term ⇒ (′f , ′q) term ⇒ bool
for G where
mctxt [intro]: length ss = length ts =⇒ num holes C = length ss =⇒
∀ i < length ts. ∃ q . q ∈ ta res (fst G) (ss ! i) ∧ q ∈ ta res (snd G) (ts ! i) =⇒
gtt accept ′ G (fill holes C ss) (fill holes C ts)

Listing 1: Definition of GTT acceptance.

p→ q are between states. Noting that the transitions are ground rewrite rules, we write →A
for →∆. To decide confluence of R, first a ground tree transducer (GTT for short) G = (A,B)
is constructed that recognizes a relation in between2 →R and →∗R. A GTT G consists of two
tree automata A and B that operate on the same signature. A pair of ground terms s and t is
accepted by G if s→∗A · ∗B← t; we denote the relation consisting of all such pairs (s, t) by L(G).

Next the transitive closure G∗ of G is computed by an iterative procedure in which certain
ε-transitions are added to the involved tree automata. Since (→∗R)∗ = →∗R, the GTT G∗
recognizes reachability. The relation ∗

R← is recognized by the inverse G∗− of G∗ (which is simply
obtained by interchanging the two tree automata that make up G∗).

The GTTs G∗ and G∗− are composed to obtain GTTs G1 and G2 that recognize the relations
↑R = ∗

R← · →∗R and ↓R =→∗R · ∗R←. The final step of the decision procedure is the inclusion
check L(G1) ⊆ L(G2). In [4] this is done by applying an ad-hoc recognizability preserving
transformation from GTTs to tree automata over an extended signature, and subsequently use
a decision procedure for tree language inclusion. In our formalization we instead associate RR2

automata to G1 and G2, followed by an inclusion check for RRn automata. The reason for this
approach is that RRn automata play a key role in the decision procedure for the first-order
theory of rewriting. Therefore we can reuse our results when formalizing further aspects of the
theory implemented in FORT.

The most complicated part of the above procedure is the closure of GTT relations under
composition and transitive closure. Proofs of these results are presented in detail in [1, Section 3.2].
Below we present (simpler) paper proofs that correspond to our formalization.

3 Formalizing the Confluence Check

We rely on IsaFoR’s formalization of tree automata, where a tree automaton is a triple consisting
of the set of final states (which is irrelevant for GTTs), the set of ordinary transitions, and the
set of epsilon transitions. The set of states of the automaton is left implicit. For example,

ta.make {0} {a [] → 1 , f [1] → 0} {(0 , 1)}

would be an automaton that accepts fk(a) for k > 1 (the transitions are a→ 1, f(1)→ 0, and
0→ 1). We can check whether an automaton A accepts a term t in state q using q ∈ ta res A
t. The language accepted by A is provided as ta lang A. GTTs are formalized as pairs of tree
automata with the same state and function symbol types. The relation accepted by a GTT is
formalized by the predicate gtt accept, which is equivalent 4 to gtt accept ′ given in Listing 1.

The first step of the construction is to obtain a GTT from the given ground TRS R. To this
end, we follow the construction by Dauchet et al. [4]. Let 〈s〉 be a state for each subterm s�R

2While it is true that →∥ R is recognizable by a GTT, we have not yet formalized this fact.

2

http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT.html#lem:gtt_accept_equiv

Formalizing GTTs in Isabelle/HOL Felgenhauer, Middeldorp, Prathamesh, Rapp

definition cmn ta rules::(′f , ′v) term set ⇒ ((′f , ′v) term option, ′f) ta rule set
where

cmn ta rules T =
{(f (map Some ts) → Some (Fun f ts)) |f ts t . Fun f ts � t ∧ t ∈ T}

definition trs to ta A::(′f , ′v) trs ⇒ ((′f , ′v) term option, ′f) ta where
trs to ta A R = ta.make {} (cmn ta rules (TRS terms R))
{(Some l , Some r) |l r . (l ,r) ∈ R}

Listing 2: Associating a GTT to a TRS.

(meaning there is a rule l→ r in R such that s� l or s� r). Let G = (A,B) where

∆A = {f(〈t1〉, . . . , 〈tn〉)→ 〈f(t1, . . . , tn)〉 | f(t1, . . . , tn) �R} ∪ {〈l〉 → 〈r〉 | l→ r ∈ R}

and ∆B is defined symmetrically (replacing 〈l〉 → 〈r〉 by 〈r〉 → 〈l〉 in the second subset). In the
formalization, 〈s〉 is represented by Some s.3 This gives rise to the definitions in Listing 2. The
resulting GTT is suitable for simulating sequences of R steps, by the following theorem.

Theorem 1. →R ⊆ L(A,B) ⊆ →∗R 4 4

Example 2. The construction is illustrated on the ground TRS R consisting of the rules a→ f(a),
a→ b, and f(b)→ c. We construct the GTT G = (A,B) with ∆ consisting of the rules

a→ 〈a〉 b→ 〈b〉 c→ 〈c〉 f(〈a〉)→ 〈f(a)〉 f(〈b〉)→ 〈f(b)〉

to recognize all subterms in the rules of R, ∆A = ∆ ∪ {〈a〉 → 〈f(a)〉, 〈a〉 → 〈b〉, 〈f(b)〉 → 〈c〉},
and ∆B = ∆ ∪ {〈f(a)〉 → 〈a〉, 〈b〉 → 〈a〉, 〈c〉 → 〈f(b)〉}. Note that L(G) accepts more than →∥ R.
For instance, (a, f(b)) ∈ L(G) as a→∗A 〈f(a)〉 ∗B← f(b) but a→∥ R f(b) does not hold.

To illustrate one of the minor (but tedious) issues that come up in the formalization, note
that the state type of the GTT seeps into terms accepted by the GTT: they are objects of type
(′f , (′f , ′q) term option) term. On the other hand, R∗ is a relation between terms of type (′f ,
′v) term, with a completely different variable type. But actually, since we deal with ground
terms, the variable type does not matter. In order to express this property, we use the existent
adapt vars function that changes the variable type arbitrarily.

The next step in the decision procedure is the computation of the transitive closure. However,
that computation builds on top of the composition of GTT relations, so we present that first.
The composition combines the transitions of the constituent GTTs, and adds carefully chosen
epsilon transitions.

Definition 3. 4 Let G1 = (A1,B1) and G2 = (A2,B2) be GTTs. We let

GTT comp(G1,G2) = (∆A1 ∪∆A2 ∪∆ε(B1,A2),∆A1 ∪∆A2 ∪∆ε(A2,B1))

Here ∆ε(A,B) = {(p, q) | t→∗A p and t→∗B q for some t ∈ T (F)}.

This construction is simplified compared to [1, 3]. Compared to [3], only ε-transitions are
added, while [1] actually adds fewer ε-transitions than our definition, but at the cost of a less
symmetric definition.

3This use of the option type is not really necessary, but it was helpful to distinguish states and terms while
developing the proofs.

3

http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_TRS.html#lem:gtt_accept_to_rstep_rtrancl
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_TRS.html#lem:rstep_to_gtt_accept
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose.html#def:Δ_ε

Formalizing GTTs in Isabelle/HOL Felgenhauer, Middeldorp, Prathamesh, Rapp

Example 4. Continuing Example 2, we let Q be the set of states in ∆ and compute ∆ε(A,B) =
IdQ ∪ {〈b〉 → 〈a〉, 〈c〉 → 〈f(b)〉} ∪ {〈c〉, 〈f(a)〉, 〈f(b)〉} × {〈a〉, 〈f(a)〉} and ∆ε(B,A) = ∆ε(A,B)−.
For instance, the transition rule 〈c〉 → 〈a〉 ∈ ∆ε(A,B) is witnessed by the term f(b).

Theorem 5. 4 If R1 and R2 are recognizable relations then R1 ◦R2 is a recognizable relation.
More precisely, if R1 and R2 are recognized by G1 and G2, where the states of G1 and G2 are
disjoint, then R1 ◦R2 is recognized by GTT comp(G1,G2).

The transitive closure of a GTT G is computed by taking G0 = G and then iterating
Gn+1 = GTT comp(Gn,Gn) until a fixed point is reached. If G is finite, this process terminates.
4 We have proved that the GTT produced that way accepts the transitive closure of the
original GTT. 4 One interesting aspect is that transitivity of the resulting GTT relation
follows immediately from the first part of the proof of Theorem 5 (where the assumption that
the states of G1 and G2 are disjoint is not used). 4

Example 6. Returning to our example, let A1 = A ∪∆ε(B,A) and B1 = B ∪∆ε(A,B). The
GTT G1 = (A1,B1) recognizes →∗R while its inverse ∗R← is recognized by G−1 = (B1,A1). Next
we compose G−1 and G1 to obtain a GTT G↑ that recognizes ∗R← · →∗R. This requires a renaming
of states in one of the GTTs. Similarly, composing G1 and G−1 produces a GTT G↓ recognizing
the joinability relation →∗R · ∗R←.

Finally, we need to check whether one GTT language is a subset of another one. To this end,
we formalized the result 4 that any GTT relation is an RR2 relation, where RRn relations are
a way of capturing n-ary relations on terms as regular tree languages [1]. (The detour via GTTs
is necessary because RR2 relations are not closed under transitive closure.)

Theorem 7. 4 Let R be a ground TRS and let G = (A,B) be the GTT simulating R-steps as
in Theorem 1. Then R is confluent on ground terms if and only if

ta lang(GTT to RR2(GTT comp(G∗−,G∗))) ⊆ ta lang(GTT to RR2(GTT comp(G∗,G∗−)))

Example 8. To finish our running example, we transform G↑ and G↓ into RR2 automata. A
subsequent language inclusion check returns a negative answer from which we infer that the
TRS R lacks confluence.

Note that the results presented so far are purely theoretical, and cannot be executed directly.
Here we sketch how to derive executable code for ∆ε, cf. Definition 3. Note that a direct
implementation of the definition would require iterating over all ground terms t, of which there
are infinitely many. The first step is to define an inductive set ∆′ε 4 that is equal to ∆ε: 4

f(~p)→ p ∈ A f(~q)→ q ∈ B len ~p = len ~q = n (pi, qi) ∈ ∆′ε (1 6 i 6 n)

(p, q) ∈ ∆′ε
cong

(p, q) ∈ ∆′ε p→ p′ ∈ A
(p′, q) ∈ ∆′ε

ε1
(p, q) ∈ ∆′ε q → q′ ∈ B

(p, q′) ∈ ∆′ε
ε2

We then plug this into a generic algorithm for Horn inference (which we regard as the foundation
of saturation algorithms), which works on inference rules of the shape a1 · · · an → a, where
ai, a are all of the same type. The idea here is that proving correctness and termination can be
done once and for all on this generic level, and then be reused for any saturation procedure.

In the case of ∆′ε, the inference rules work on pairs of states (p, q), i.e., the potential elements
of ∆′ε. We turn the inferences of ∆′ε into Horn clauses by keeping only the premises of the form
(p, q) ∈ ∆′ε, evaluating the other premises statically based on A and B. 4 Then we show that

4

http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose.html#lem:gtt_comp_lang
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Transitive_Closure.html#trans_closure_fixpoint
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Transitive_Closure.html#lem:𝒢_N_lang
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Transitive_Closure.html#lem:𝒢_N_GTT_trans
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_RRn.html#lem:GTT_to_RR2
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/Ground_Confluence2.html#lem:GCR_criterion
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose_Impl.html#ind:Δ_ε'
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose_Impl.html#lem:Δ_ε_eq_Δ_ε'
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose_Impl.html#def:Δ_ε'_rules

Formalizing GTTs in Isabelle/HOL Felgenhauer, Middeldorp, Prathamesh, Rapp

the resulting Horn inferences characterize ∆′ε. 4 In order to use the generic procedure, we
have to provide a function that computes the inferences with no premises (∆ε

′ infer0), 4 and
a function that computes inferences that use a particular premise (p, q) and other premises from
a given set (∆ε

′ infer1). 4 With those functions we can instantiate the generic procedure.

∆ε
′ impl A B = saturate impl (∆ε

′ infer0 A B) (∆ε
′ infer1 A B)

Partial correctness follows from partial correctness of the generic procedure. 4

4 Conclusion

We have outlined an ongoing effort to formalize decidability of (ground) confluence of ground
TRSs, which is a useful test case for the decidability of the full first-order theory of rewriting for
ground TRSs. The main remaining challenge is to provide executable algorithms for all these
results and prove their termination. We have already made significant progress to this end; in
fact there are executable versions of all constructions needed for the confluence check, except for
the final tree language subset check.

Our immediate goal is to provide a verified confluence checker for ground TRSs. Many tasks
remain as future work. We want to adapt the basic TRS to GTT construction to cover the larger
class of linear, variable separated (extended) TRSs. For the full first-order theory of rewriting,
while we already have constructions for intersection, union, complement, cylindrification and
projection (the latter are used for dealing with quantifiers), these are not yet executable.

References

[1] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications. Available from www.grappa.univ-lille3.fr/tata,
2008.

[2] H. Comon, G. Godoy, and R. Nieuwenhuis. The confluence of ground term rewrite systems is decidable
in polynomial time. In Proc. 42nd FOCS, pages 298–307, 2001. doi: 10.1109/SFCS.2001.959904.

[3] M. Dauchet, T. Heuillard, P. Lescanne, and S. Tison. Decidability of the confluence of ground term
rewriting systems. In Proc. 2nd LICS, pages 353–359, 1987.

[4] M. Dauchet, T. Heuillard, P. Lescanne, and S. Tison. Decidability of the confluence of finite ground
term rewriting systems and of other related term rewriting systems. I&C, 88(2):187–201, 1990.
doi: 10.1016/0890-5401(90)90015-A.

[5] M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proc. 5th LICS,
pages 242–248, 1990. doi: 10.1109/LICS.1990.113750.

[6] B. Felgenhauer. Deciding confluence of ground term rewrite systems in cubic time. In Proc. 23rd
RTA, volume 15 of LIPIcs, pages 165–175, 2012. doi: 10.4230/LIPIcs.RTA.2012.165.

[7] M. Oyamaguchi. The Church-Rosser property for ground term-rewriting systems is decidable.
Theoretical Computer Science, 49:43–79, 1987. doi: 10.1016/0304-3975(87)90100-9.

[8] F. Rapp and A. Middeldorp. Automating the first-order theory of left-linear right-ground term
rewrite systems. In Proc. 1st FSCD, volume 52 of LIPIcs, pages 36:1–36:12, 2016. doi: 10.4230/
LIPIcs.FSCD.2016.36.

[9] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc. 22nd
TPHOLs, volume 5674 of LNCS, pages 452–468, 2009. doi: 10.1007/978-3-642-03359-9_31.

5

http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose_Impl.html#def:Δ_ε'_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose_Impl.html#def:Δ_ε'_infer0
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose_Impl.html#def:Δ_ε'_infer1
http://cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/GCR/GTT_Compose_Impl.html#lem:Δ_ε'_impl_sound
www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1109/SFCS.2001.959904
http://dx.doi.org/10.1016/0890-5401(90)90015-A
http://dx.doi.org/10.1109/LICS.1990.113750
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.165
http://dx.doi.org/10.1016/0304-3975(87)90100-9
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.36
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.36
http://dx.doi.org/10.1007/978-3-642-03359-9_31

	Introduction
	Preliminaries
	Formalizing the Confluence Check
	Conclusion

