theory LV_to_GTT
imports RR.Pair_Automaton Bot_Terms
begin
lemma finite_UN_I2:
"finite A ⟹ (∀ B ∈ A. finite B) ⟹ finite (⋃ A)"
by blast
abbreviation ffunas_terms where
"ffunas_terms R ≡ |⋃| (ffunas_term |`| R)"
"states R ≡ {t^⊥ | s t. s ∈ R ∧ s ⊵ t}"">definition "states R ≡ {t⇧⊥ | s t. s ∈ R ∧ s ⊵ t}"
lemma states_conv:
"states R = term_to_bot_term ` (⋃ s ∈ R. subterms s)"
unfolding states_def set_all_subteq_subterms
by auto
lemma finite_states:
assumes "finite R" shows "finite (states R)"
proof -
have conv: "states R = term_to_bot_term ` (⋃ s ∈ R. {t | t. s ⊵ t})"
unfolding states_def by auto
from assms have "finite (⋃ s ∈ R. {t | t. s ⊵ t})"
by (intro finite_UN_I2 finite_imageI) (simp add: finite_subterms)+
then show ?thesis using conv by auto
qed
lemma root_bot_diff:
"root_bot ` (R - {Bot}) = (root_bot ` R) - {None}"
using root_bot.elims by auto
lemma root_bot_states_root_subterms:
"the ` (root_bot ` (states R - {Bot})) = the ` (root ` (⋃ s ∈ R. subterms s) - {None})"
unfolding states_conv root_bot_diff
unfolding image_comp
by simp
context
includes fset.lifting
begin
lift_definition fstates :: "('f, 'v) term fset ⇒ 'f bot_term fset" is states
by (simp add: finite_states)
lift_definition fsubterms :: "('f, 'v) term ⇒ ('f, 'v) term fset" is subterms
by (simp add: finite_subterms_fun)
lemmas fsubterms [code] = subterms.simps[Transfer.transferred]
lift_definition ffunas_rule :: "('f, 'v) term × ('f, 'v) term ⇒ ('f × nat) fset" is funas_rule
by (simp add: finite_funas_rule)
lift_definition ffunas_trs :: "(('f, 'v) term × ('f, 'v) term) fset ⇒ ('f × nat) fset" is funas_trs
by (simp add: finite_funas_trs)
lemmas ffunas_rule_def' = funas_rule_def [Transfer.transferred]
lemmas ffunas_trs_def' = funas_trs_def [Transfer.transferred]
lemma fstates_def':
"t |∈| fstates R ⟷ (∃ s u. s |∈| R ∧ s ⊵ u ∧ u⇧⊥ = t)"
by transfer (auto simp: states_def)
lemma fstates_fmemberE [elim!]:
assumes "t |∈| fstates R"
obtains s u where "s |∈| R ∧ s ⊵ u ∧ u⇧⊥ = t"
using assms unfolding fstates_def'
by blast
lemma fstates_fmemberI [intro]:
"s |∈| R ⟹ s ⊵ u ⟹ u⇧⊥ |∈| fstates R"
unfolding fstates_def' by blast
lemmas froot_bot_states_root_subterms = root_bot_states_root_subterms[Transfer.transferred]
lemmas root_fsubsterms_ffunas_term_fset = root_substerms_funas_term_set[Transfer.transferred]
lemma ffunas_trs_sig_split_fst:
"ffunas_trs R |⊆| ℱ ⟹ ℱ |∪| |⋃| ((ffunas_term ∘ fst) |`| R) = ℱ"
by transfer (auto simp: funas_trs_def funas_rule_def)
lemma ffunas_trs_sig_split_snd:
"ffunas_trs R |⊆| ℱ ⟹ ℱ |∪| |⋃| ((ffunas_term ∘ snd) |`| R) = ℱ"
by transfer (auto simp: funas_trs_def funas_rule_def)
lemma fstates[code]:
"fstates R = term_to_bot_term |`| ( |⋃| (fsubterms |`| R))"
by transfer (auto simp: states_conv)
end
definition ta_rule_sig where
"ta_rule_sig = (λ r. (r_root r, length (r_lhs_states r)))"
primrec term_to_ta_rule where
"term_to_ta_rule (BFun f ts) = TA_rule f ts (BFun f ts)"
lemma ta_rule_sig_term_to_ta_rule_root:
"t ≠ Bot ⟹ ta_rule_sig (term_to_ta_rule t) = the (root_bot t)"
by (cases t) (auto simp: ta_rule_sig_def)
lemma ta_rule_sig_term_to_ta_rule_root_set:
assumes "Bot |∉| R"
shows "ta_rule_sig |`| (term_to_ta_rule |`| R) = the |`| (root_bot |`| R)"
proof -
{fix x assume "x |∈| R" then have "ta_rule_sig (term_to_ta_rule x) = the (root_bot x)"
using ta_rule_sig_term_to_ta_rule_root[of x] assms
by auto}
then show ?thesis
by (force simp: fimage_iff)
qed
definition pattern_automaton_rules where
"pattern_automaton_rules ℱ R =
(let states = (fstates R) - {|Bot|} in
term_to_ta_rule |`| states |∪| (λ (f, n). TA_rule f (replicate n Bot) Bot) |`| ℱ)"
lemma pattern_automaton_rules_BotD:
assumes "TA_rule f ss Bot |∈| pattern_automaton_rules ℱ R"
shows "TA_rule f ss Bot |∈| (λ (f, n). TA_rule f (replicate n Bot) Bot) |`| ℱ" using assms
by (auto simp: pattern_automaton_rules_def)
(metis ta_rule.inject term_to_bot_term.elims term_to_ta_rule.simps)
lemma pattern_automaton_rules_FunD:
assumes "TA_rule f ss (BFun g ts) |∈| pattern_automaton_rules ℱ R"
shows "g = f ∧ ts = ss ∧
TA_rule f ss (BFun g ts) |∈| term_to_ta_rule |`| ((fstates R) - {|Bot|})" using assms
apply (auto simp: pattern_automaton_rules_def)
apply (metis bot_term.exhaust ta_rule.inject term_to_ta_rule.simps)
by (metis (no_types, lifting) ta_rule.inject term_to_bot_term.elims term_to_ta_rule.simps)
definition pattern_automaton where
"pattern_automaton ℱ R = TA (pattern_automaton_rules ℱ R) {||}"
lemma ta_sig_pattern_automaton [simp]:
"ta_sig (pattern_automaton ℱ R) = ℱ |∪| ffunas_terms R"
proof -
let ?r = "ta_rule_sig"
have *:"Bot |∉| (fstates R) - {|Bot|}" by simp
have f: "ℱ = ?r |`| ((λ (f, n). TA_rule f (replicate n Bot) Bot) |`| ℱ)"
by (auto simp: fimage_iff fBex_def ta_rule_sig_def split!: prod.splits)
moreover have "ffunas_terms R = ?r |`| (term_to_ta_rule |`| ((fstates R) - {|Bot|}))"
unfolding ta_rule_sig_term_to_ta_rule_root_set[OF *]
unfolding froot_bot_states_root_subterms root_fsubsterms_ffunas_term_fset
by simp
ultimately show ?thesis unfolding pattern_automaton_def ta_sig_def
unfolding ta_rule_sig_def pattern_automaton_rules_def
by (auto simp add: Let_def comp_def fimage_funion)
qed
lemma terms_reach_Bot:
assumes "ffunas_gterm t |⊆| ℱ"
shows "Bot |∈| ta_der (pattern_automaton ℱ R) (term_of_gterm t)" using assms
proof (induct t)
case (GFun f ts)
have [simp]: "s ∈ set ts ⟹ ffunas_gterm s |⊆| ℱ" for s using GFun(2)
using in_set_idx by fastforce
from GFun show ?case
by (auto simp: pattern_automaton_def pattern_automaton_rules_def rev_fimage_eqI
intro!: exI[of _ "replicate (length ts) Bot"])
qed
lemma pattern_automaton_reach_smaller_term:
assumes "l |∈| R" "l ⊵ s" "s⇧⊥ ≤⇩b (term_of_gterm t)⇧⊥" "ffunas_gterm t |⊆| ℱ"
shows "s⇧⊥ |∈| ta_der (pattern_automaton ℱ R) (term_of_gterm t)" using assms(2-)
proof (induct t arbitrary: s)
case (GFun f ts) show ?case
proof (cases s)
case (Var x)
then show ?thesis using terms_reach_Bot[OF GFun(4)]
by (auto simp del: ta_der_Fun)
next
case [simp]: (Fun g ss)
let ?ss = "map term_to_bot_term ss"
have [simp]: "s ∈ set ts ⟹ ffunas_gterm s |⊆| ℱ" for s using GFun(4)
using in_set_idx by fastforce
from GFun(3) have s: "g = f" "length ss = length ts" by auto
from GFun(2) s(2) assms(1) have rule: "TA_rule f ?ss (BFun f ?ss) |∈| pattern_automaton_rules ℱ R"
by (auto simp: s(1) pattern_automaton_rules_def fimage_iff fBex_def)
{fix i assume bound: "i < length ts"
then have sub: "l ⊵ ss ! i" using GFun(2) arg_subteq[OF nth_mem, of i ss f]
unfolding Fun s(1) using s(2) by (metis subterm.order.trans)
have "ss ! i⇧⊥ ≤⇩b (term_of_gterm (ts ! i):: ('a, 'c) term)⇧⊥" using GFun(3) bound s(2)
by (auto simp: s elim!: bless_eq.cases)
from GFun(1)[OF nth_mem sub this] bound
have "ss ! i⇧⊥ |∈| ta_der (pattern_automaton ℱ R) (term_of_gterm (ts ! i))"
by auto}
then show ?thesis using GFun(2-) s(2) rule
by (auto simp: s(1) pattern_automaton_def intro!: exI[of _ ?ss] exI[of _ "BFun f ?ss"])
qed
qed
lemma bot_term_of_gterm_conv:
"term_of_gterm s⇧⊥ = term_of_gterm s⇧⊥"
by (induct s) auto
lemma pattern_automaton_ground_instance_reach:
assumes "l |∈| R" "l ⋅ σ = (term_of_gterm t)" "ffunas_gterm t |⊆| ℱ"
shows "l⇧⊥ |∈| ta_der (pattern_automaton ℱ R) (term_of_gterm t)"
proof -
let ?t = "(term_of_gterm t) :: ('a, 'a bot_term) term"
from instance_to_bless_eq[OF assms(2)] have sm: "l⇧⊥ ≤⇩b ?t⇧⊥"
using bot_term_of_gterm_conv by metis
show ?thesis using pattern_automaton_reach_smaller_term[OF assms(1) _ sm] assms(3-)
by auto
qed
lemma pattern_automaton_reach_smallet_term:
assumes "l⇧⊥ |∈| ta_der (pattern_automaton ℱ R) t" "ground t"
shows "l⇧⊥ ≤⇩b t⇧⊥" using assms
proof (induct t arbitrary: l)
case (Fun f ts) note IH = this show ?case
proof (cases l)
case (Fun g ss)
let ?ss = "map term_to_bot_term ss"
from IH(2) have rule: "g = f" "length ss = length ts"
"TA_rule f ?ss (BFun f ?ss) |∈| rules (pattern_automaton ℱ R)"
by (auto simp: Fun pattern_automaton_def dest: pattern_automaton_rules_FunD)
{fix i assume "i < length ts"
then have "ss ! i⇧⊥ ≤⇩b ts ! i⇧⊥" using IH(2, 3) rule(2)
by (intro IH(1)) (auto simp: Fun pattern_automaton_def dest: pattern_automaton_rules_FunD)}
then show ?thesis using rule(2)
by (auto simp: Fun rule(1))
qed auto
qed auto
definition lv_trs :: "('f, 'v) trs ⇒ bool" where
"lv_trs R ≡ ∀(l, r) ∈ R. linear_term l ∧ linear_term r ∧ (vars_term l ∩ vars_term r = {})"
lemma subst_unification:
assumes "vars_term s ∩ vars_term t = {}"
obtains μ where "s ⋅ σ = s ⋅ μ" "t ⋅ τ = t ⋅ μ"
using assms
by (auto intro!: that[of "λx. if x ∈ vars_term s then σ x else τ x"] simp: term_subst_eq_conv)
lemma lv_trs_subst_unification:
assumes "lv_trs R" "(l, r) ∈ R" "s = l ⋅ σ" "t = r ⋅ τ"
obtains μ where "s = l ⋅ μ ∧ t = r ⋅ μ"
using assms subst_unification[of l r σ τ]
unfolding lv_trs_def
by (force split!: prod.splits)
definition Rel⇩f where
"Rel⇩f R = map_both term_to_bot_term |`| R"
definition root_pair_automaton where
"root_pair_automaton ℱ R = (pattern_automaton ℱ (fst |`| R),
pattern_automaton ℱ (snd |`| R))"
lemma root_pair_automaton_grrstep:
fixes R :: "('f, 'v) rule fset"
assumes "lv_trs (fset R)" "ffunas_trs R |⊆| ℱ"
shows "pair_at_lang (root_pair_automaton ℱ R) (Rel⇩f R) = Restr (grrstep (fset R)) (𝒯⇩G (fset ℱ))" (is "?Ls = ?Rs")
proof
let ?t_o_g = "term_of_gterm :: 'f gterm ⇒ ('f, 'v) Term.term"
{fix s t assume "(s, t) ∈ ?Ls"
from pair_at_langE[OF this] obtain p q where st: "(q, p) |∈| Rel⇩f R"
"q |∈| gta_der (fst (root_pair_automaton ℱ R)) s" "p |∈| gta_der (snd (root_pair_automaton ℱ R)) t"
by blast
from st(1) obtain l r where tm: "q = l⇧⊥" "p = r⇧⊥" "(l, r) |∈| R" unfolding Rel⇩f_def
using assms(1) by (auto simp: fmember.abs_eq)
have sm: "l⇧⊥ ≤⇩b (?t_o_g s)⇧⊥" "r⇧⊥ ≤⇩b (?t_o_g t)⇧⊥"
using pattern_automaton_reach_smallet_term[of l ℱ "fst |`| R" "term_of_gterm s"]
using pattern_automaton_reach_smallet_term[of r ℱ "snd |`| R" "term_of_gterm t"]
using st(2, 3) tm(3) unfolding tm
by (auto simp: gta_der_def root_pair_automaton_def) (smt bot_term_of_gterm_conv)+
have "linear_term l" "linear_term r" using tm(3) assms(1)
by (auto simp: lv_trs_def fmember.rep_eq)
then obtain σ τ where "l ⋅ σ = ?t_o_g s" "r ⋅ τ = ?t_o_g t" using sm
by (auto dest!: bless_eq_to_instance)
then obtain μ where subst: "l ⋅ μ = ?t_o_g s" "r ⋅ μ = ?t_o_g t"
using lv_trs_subst_unification[OF assms(1) tm(3)[unfolded fmember.rep_eq], of "?t_o_g s" σ "?t_o_g t" τ]
by metis
moreover have "s ∈ 𝒯⇩G (fset ℱ)" "t ∈ 𝒯⇩G (fset ℱ)" using st(2-) assms
using ta_der_gterm_sig[of q "pattern_automaton ℱ (fst |`| R)" s]
using ta_der_gterm_sig[of p "pattern_automaton ℱ (snd |`| R)" t]
by (auto simp: gta_der_def root_pair_automaton_def 𝒯⇩G_equivalent_def ffunas_gterm.rep_eq less_eq_fset.rep_eq
ffunas_trs_sig_split_fst[OF assms(2)] ffunas_trs_sig_split_snd[OF assms(2)])
ultimately have "(s, t) ∈ ?Rs" using tm(3)
by (auto simp: grrstep_def rrstep_def' fmember.rep_eq) metis}
then show "?Ls ⊆ ?Rs" by auto
next
let ?t_o_g = "term_of_gterm :: 'f gterm ⇒ ('f, 'v) Term.term"
{fix s t assume "(s, t) ∈ ?Rs"
then obtain σ l r where st: "(l, r) |∈| R" "l ⋅ σ = ?t_o_g s" "r ⋅ σ = ?t_o_g t" "s ∈ 𝒯⇩G (fset ℱ)" "t ∈ 𝒯⇩G (fset ℱ)"
by (auto simp: grrstep_def rrstep_def' fmember.rep_eq)
have funas: "ffunas_gterm s |⊆| ℱ" "ffunas_gterm t |⊆| ℱ" using st(4, 5)
by (auto simp: 𝒯⇩G_equivalent_def)
(metis ffunas_gterm.rep_eq notin_fset subsetD)+
from st(1) have "(l⇧⊥, r⇧⊥) |∈| Rel⇩f R" unfolding Rel⇩f_def using assms(1)
by (auto simp: fimage_iff fBex_def)
then have "(s, t) ∈ ?Ls" using st
using pattern_automaton_ground_instance_reach[of l "fst |`| R" σ, OF _ _ funas(1)]
using pattern_automaton_ground_instance_reach[of r "snd |`| R" σ, OF _ _ funas(2)]
by (auto simp: 𝒯⇩G_equivalent_def fimage_iff fBex_def fmember.abs_eq root_pair_automaton_def gta_der_def pair_at_lang_def)}
then show "?Rs ⊆ ?Ls" by auto
qed
lemma agtt_grrstep:
fixes R :: "('f, 'v) rule fset"
assumes "lv_trs (fset R)" "ffunas_trs R |⊆| ℱ"
shows "agtt_lang (pair_at_to_agtt' (root_pair_automaton ℱ R) (Rel⇩f R)) =
Restr (grrstep (fset R)) (𝒯⇩G (fset ℱ))"
using root_pair_automaton_grrstep[OF assms] unfolding pair_at_agtt_cost
by simp
lemma root_pair_automaton_grrstep_set:
fixes R :: "('f, 'v) rule set"
assumes "finite R" "finite ℱ" "lv_trs R" "funas_trs R ⊆ ℱ"
shows "pair_at_lang (root_pair_automaton (Abs_fset ℱ) (Abs_fset R)) (Rel⇩f (Abs_fset R)) = Restr (grrstep R) (𝒯⇩G ℱ)"
proof -
from assms(1, 2, 4) have "ffunas_trs (Abs_fset R) |⊆| Abs_fset ℱ"
by (auto simp add: Abs_fset_inverse ffunas_trs.rep_eq fmember.rep_eq subset_eq)
from root_pair_automaton_grrstep[OF _ this] assms
show ?thesis
by (auto simp: Abs_fset_inverse)
qed
lemma agtt_grrstep_set:
fixes R :: "('f, 'v) rule set"
assumes "finite R" "finite ℱ" "lv_trs R" "funas_trs R ⊆ ℱ"
shows "agtt_lang (pair_at_to_agtt' (root_pair_automaton (Abs_fset ℱ) (Abs_fset R)) (Rel⇩f (Abs_fset R))) =
Restr (grrstep R) (𝒯⇩G ℱ)"
using root_pair_automaton_grrstep_set[OF assms] unfolding pair_at_agtt_cost
by simp
end