Problem: a() -> c() b() -> c() f(a(),b()) -> d() f(x,c()) -> f(c(),c()) f(c(),x) -> f(c(),c()) d() -> f(a(),c()) d() -> f(c(),b()) Proof: Church Rosser Transformation Processor (no redundant rules): strict: d() -> f(c(),b()) d() -> f(a(),c()) f(c(),x) -> f(c(),c()) f(x,c()) -> f(c(),c()) f(a(),b()) -> d() b() -> c() a() -> c() weak: critical peaks: 6 f(c(),b()) <-0|[]- d() -1|[]-> f(a(),c()) f(a(),c()) <-1|[]- d() -0|[]-> f(c(),b()) f(c(),c()) <-2|[]- f(c(),c()) -3|[]-> f(c(),c()) f(c(),c()) <-3|[]- f(c(),c()) -2|[]-> f(c(),c()) f(a(),c()) <-5|1[]- f(a(),b()) -4|[]-> d() f(c(),b()) <-6|0[]- f(a(),b()) -4|[]-> d() Closedness Processor (*strongly -- <=7 steps*): Qed