Problem: a() -> b() a() -> c() a() -> e() b() -> d() c() -> a() d() -> a() d() -> e() g(x) -> h(a()) h(x) -> e() Proof: Church Rosser Transformation Processor (critical pair closing system, Thm 2.11): c() -> a() a() -> b() b() -> d() d() -> e() a() -> e() critical peaks: joinable Matrix Interpretation Processor: dim=1 interpretation: [d] = 0, [b] = 0, [e] = 0, [a] = 4, [c] = 4 orientation: c() = 4 >= 4 = a() a() = 4 >= 0 = b() b() = 0 >= 0 = d() d() = 0 >= 0 = e() a() = 4 >= 0 = e() problem: c() -> a() b() -> d() d() -> e() Matrix Interpretation Processor: dim=1 interpretation: [d] = 4, [b] = 4, [e] = 0, [a] = 0, [c] = 0 orientation: c() = 0 >= 0 = a() b() = 4 >= 4 = d() d() = 4 >= 0 = e() problem: c() -> a() b() -> d() Matrix Interpretation Processor: dim=1 interpretation: [d] = 0, [b] = 1, [a] = 0, [c] = 0 orientation: c() = 0 >= 0 = a() b() = 1 >= 0 = d() problem: c() -> a() Matrix Interpretation Processor: dim=1 interpretation: [a] = 0, [c] = 1 orientation: c() = 1 >= 0 = a() problem: Qed