section ‹Miscellaneous›
text ‹This theory contains several trivial extensions to existing IsaFoR theories.›
theory LS_Extras
imports
TRS.Multihole_Context
Aux.Renaming
TRS.Unification_More
begin
subsection ‹Bounded duplication›
lemma image_mset_Some_None_zero [simp]:
"count (image_mset Some M) None = 0"
by (induct M) auto
text ‹IsaFoR does not seem to define non-duplicating TRSs yet.›
definition non_duplicating :: "('f, 'v) trs ⇒ bool" where
"non_duplicating R ≡ ∀l r. (l, r) ∈ R ⟶ vars_term_ms r ≤# vars_term_ms l"
text ‹Bounded duplication @{cite ‹Definition 4.2› FMZvO15}. Note: @{term "undefined"} is an arbitrary fixed value.›
definition bounded_duplicating :: "('f, 'v) trs ⇒ bool" where
"bounded_duplicating R ≡ SN_rel (rstep {(Fun None [Var undefined], Var undefined)}) (rstep (map_funs_trs Some R))"
text ‹Non-duplicating TRSs are bounded duplicating @{cite ‹Lemma 4.4› FMZvO15}.›
lemma non_duplicating_imp_bounded_duplicating:
assumes nd: "non_duplicating R"
shows "bounded_duplicating R"
proof -
let ?gt = "inv_image {(n, m) . n > m} (λt. count (funs_term_ms t) None)"
let ?ss = "rstep {(Fun None [Var undefined], Var undefined)}"
let ?ge = "inv_image {(n, m) . n ≥ m} (λt. count (funs_term_ms t) None)"
let ?rs = "rstep (map_funs_trs Some R)"
have "?ss ⊆ ?gt"
proof
fix s t
assume "(s, t) ∈ ?ss"
then have "count (funs_term_ms s) None > count (funs_term_ms t) None"
proof
fix C σ l r
presume rl: "(l, r) ∈ {(Fun None [Var undefined], Var undefined)}"
and s: "s = C⟨l ⋅ σ⟩" and t: "t = C⟨r ⋅ σ⟩"
show "count (funs_term_ms s) None > count (funs_term_ms t) None" using rl
by (auto simp: s t funs_term_ms_ctxt_apply funs_term_ms_subst_apply)
qed auto
then show "(s, t) ∈ ?gt" by simp
qed
moreover have "?rs ⊆ ?ge"
proof
fix s t
assume "(s, t) ∈ ?rs"
then have "count (funs_term_ms s) None ≥ count (funs_term_ms t) None"
proof
fix C σ l r
{
fix l r
assume "(l, r) ∈ map_funs_trs Some R"
then have "vars_term_ms r ≤# vars_term_ms l ∧ count (funs_term_ms l) None = 0 ∧ count (funs_term_ms r) None = 0"
by (auto simp: nd[unfolded non_duplicating_def] map_funs_trs.simps funs_term_ms_map_funs_term)
} note * = this
presume rl: "(l, r) ∈ map_funs_trs Some R"
and s: "s = C⟨l ⋅ σ⟩" and t: "t = C⟨r ⋅ σ⟩"
from rl *[of l r] show "count (funs_term_ms s) None ≥ count (funs_term_ms t) None"
by (auto simp: s t funs_term_ms_ctxt_apply funs_term_ms_subst_apply)
(metis image_mset_union mset_subset_eq_count subset_mset.le_iff_add sum_mset.union)
qed auto
then show "(s, t) ∈ ?ge" by simp
qed
moreover
{
have [simp]: "?ge⇧* = ?ge"
by (auto intro!: trans_refl_imp_rtrancl_id trans_inv_image refl_inv_image simp: refl_on_def trans_def)
have *: "(?ge⇧* O ?gt O ?ge⇧*)¯ ⊆ ?gt¯"
by auto
moreover have "wf (?gt¯)" by auto (auto simp: converse_def wf_less)
ultimately have "SN_rel ?gt ?ge" unfolding SN_rel_on_def SN_iff_wf
by (intro wf_subset[OF _ *]) auto
}
ultimately show ?thesis
by (auto intro: SN_rel_mono simp: bounded_duplicating_def)
qed
subsection ‹Trivialities›
lemma pos_diff_cons [simp]: "pos_diff (i # p) (i # q) = pos_diff p q"
by (auto simp: pos_diff_def)
lemma max_list_append: "max_list (xs1 @ xs2) = max (max_list xs1) (max_list xs2)"
by (induct xs1) auto
lemma max_list_bound:
"max_list xs ≤ z ⟷ (∀i < length xs. xs ! i ≤ z)"
using less_Suc_eq_0_disj by (induct xs) auto
lemma max_list_bound_set:
"max_list xs ≤ z ⟷ (∀x ∈ set xs. x ≤ z)"
using less_Suc_eq_0_disj by (induct xs) auto
lemma max_list_mono_concat:
assumes "length xss = length yss" and "⋀i. i < length xss ⟹ max_list (xss ! i) ≤ max_list (yss ! i)"
shows "max_list (concat xss) ≤ max_list (concat yss)"
using assms
proof (induct yss arbitrary: xss)
case (Cons ys yss) then show ?case by (cases xss) (force simp: max_list_append)+
qed auto
lemma max_list_mono_concat1:
assumes "length xss = length ys" and "⋀i. i < length xss ⟹ max_list (xss ! i) ≤ ys ! i"
shows "max_list (concat xss) ≤ max_list ys"
using assms max_list_mono_concat[of xss "map (λy. [y]) ys"] by auto
lemma take1:
"take (Suc 0) xs = (if xs = [] then [] else [hd xs])"
by (cases xs) auto
lemma sum_list_take':
"i ≤ length (xs :: nat list) ⟹ sum_list (take i xs) ≤ sum_list xs"
by (induct xs arbitrary: i) (simp, case_tac i, auto)
lemma nth_equalityE:
"xs = ys ⟹ (length xs = length ys ⟹ (⋀i. i < length xs ⟹ xs ! i = ys ! i) ⟹ P) ⟹ P"
by simp
lemma finite_vars_mctxt [simp]: "finite (vars_mctxt C)"
by (induct C) auto
lemma partition_by_of_zip:
"length xs = sum_list zs ⟹ length ys = sum_list zs ⟹
partition_by (zip xs ys) zs = map (λ(x,y). zip x y) (zip (partition_by xs zs) (partition_by ys zs))"
by (induct zs arbitrary: xs ys) (auto simp: take_zip drop_zip)
lemma distinct_count_atmost_1':
"distinct xs = (∀a. count (mset xs) a ≤ 1)"
unfolding distinct_count_atmost_1 using dual_order.antisym by fastforce
lemma nth_subset_concat:
assumes "i < length xss"
shows "set (xss ! i) ⊆ set (concat xss)"
by (metis assms concat_nth concat_nth_length in_set_idx nth_mem subsetI)
lemma subst_domain_subst_of:
"subst_domain (subst_of xs) ⊆ set (map fst xs)"
proof (induct xs)
case (Cons x xs)
moreover have "subst_domain (subst (fst x) (snd x)) ⊆ set (map fst [x])" by simp
ultimately show ?case
using subst_domain_compose[of "subst_of xs" "subst (fst x) (snd x)"] by auto
qed simp
lemma subst_apply_mctxt_cong: "(∀x. x ∈ vars_mctxt C ⟶ σ x = τ x) ⟹ C ⋅mc σ = C ⋅mc τ"
by (induct C) auto
lemma distinct_concat_unique_index:
"distinct (concat xss) ⟹ i < length xss ⟹ x ∈ set (xss ! i) ⟹ j < length xss ⟹ x ∈ set (xss ! j) ⟹ i = j"
proof (induct xss rule: List.rev_induct)
case (snoc xs xss) then show ?case using nth_mem[of i xss] nth_mem[of j xss]
by (cases "i < length xss"; cases "j < length xss") (auto simp: nth_append simp del: nth_mem)
qed auto
lemma list_update_concat:
assumes "i < length xss" "j < length (xss ! i)"
shows "concat (xss[i := (xss ! i)[j := x]]) = concat xss[sum_list (take i (map length xss)) + j := x]"
using assms
proof (induct xss arbitrary: i)
case (Cons xs xss) then show ?case
by (cases i) (auto simp: list_update_append)
qed auto
lemma length_filter_sum_list:
"length (filter p xs) = sum_list (map (λx. if p x then 1 else 0) xs)"
by (induct xs) auto
lemma poss_mctxt_mono:
"C ≤ D ⟹ poss_mctxt C ⊆ poss_mctxt D"
by (induct C D rule: less_eq_mctxt_induct) force+
lemma poss_append_funposs:
shows "p @ q ∈ funposs t ⟷ p ∈ poss t ∧ q ∈ funposs (t |_ p)" (is "?L ⟷ ?R")
proof
show "?L ⟹ ?R" using funposs_imp_poss[of "p @ q" t] funposs_fun_conv[of "p @ q" t]
poss_is_Fun_funposs[of q "t |_ p"] by auto
next
show "?R ⟹ ?L" using funposs_imp_poss[of q "t |_ p"] funposs_fun_conv[of q "t |_ p"]
poss_is_Fun_funposs[of "p @ q" t] by auto
qed
text ‹see @{thm nrrstep_preserves_root} which proves this without the length›
lemma nrrstep_preserves_root':
assumes "(Fun f ss, t) ∈ nrrstep R"
shows "∃ts. t = Fun f ts ∧ length ss = length ts"
using assms unfolding nrrstep_def rstep_r_p_s_def Let_def by auto
text ‹see @{thm nrrsteps_preserve_root} which proves this without the length›
lemma nrrsteps_preserve_root':
assumes "(Fun f ss, t) ∈ (nrrstep R)⇧*"
shows "∃ts. t = Fun f ts ∧ length ss = length ts"
using assms by induct (auto dest: nrrstep_preserves_root')
lemma args_joinable_imp_joinable:
assumes "length ss = length ts" "⋀i. i < length ss ⟹ (ss ! i, ts ! i) ∈ (rstep R)⇧↓"
shows "(Fun f ss, Fun f ts) ∈ (rstep R)⇧↓"
proof -
obtain u where "i < length ss ⟹ (ss ! i, u i) ∈ (rstep R)⇧* ∧ (ts ! i, u i) ∈ (rstep R)⇧*" for i
using joinD[OF assms(2)] by metis
then show ?thesis using assms(1)
by (intro joinI[of _ "Fun f (map u [0..<length ss])"] args_rsteps_imp_rsteps) auto
qed
instance option :: (infinite) infinite
by standard (simp add: infinite_UNIV)
lemma finite_into_infinite:
assumes "finite A" "infinite B"
shows "∃f. f ` A ⊆ B ∧ inj_on f A"
proof -
from finite_imp_inj_to_nat_seg[OF assms(1)]
obtain f :: "_ ⇒ nat" and n where "f ` A = {i. i < n}" "inj_on f A" by auto
moreover from infinite_countable_subset[OF assms(2)]
obtain g :: "nat ⇒ _" where "inj g" "range g ⊆ B" by auto
ultimately show ?thesis by (auto simp: inj_on_def intro!: exI[of _ "g ∘ f"])
qed
lemma finites_into_infinites:
fixes f :: "'a ⇒ 'b set" and g :: "'a ⇒ 'c set"
assumes "⋀α β. f α ∩ f β ≠ {} ⟹ α = β"
and "⋀α. finite (f α)"
and "⋀α β. g α ∩ g β ≠ {} ⟹ α = β"
and "⋀α. infinite (g α)"
shows "∃h :: 'b ⇒ 'c. inj_on h (⋃α. f α) ∧ (∀α. h ` f α ⊆ g α)"
proof -
from finite_into_infinite[OF assms(2,4)] have "∃h. h ` f α ⊆ g α ∧ inj_on h (f α)" for α by blast
then obtain h where h: "h α ` f α ⊆ g α ∧ inj_on (h α) (f α)" for α by metis
have [simp]: "x ∈ f α ⟹ (THE α. x ∈ f α) = α" for x α using assms(1) by auto
then show ?thesis using assms(1,3) h
apply (intro exI[of _ "λx. h (THE α. x ∈ f α) x"])
apply (auto simp: inj_on_def image_def)
by blast
qed
subsection ‹Imbalance›
definition refines :: "'a list ⇒ 'b list ⇒ bool" (infix "∝" 55) where
"ss ∝ ts ⟷ length ts = length ss ∧ (∀i j. i < length ss ∧ j < length ts ∧ ss ! i = ss ! j ⟶ ts ! i = ts ! j)"
lemma refines_refl:
"ss ∝ ss"
by (auto simp: refines_def)
lemma refines_trans:
"ss ∝ ts ⟹ ts ∝ us ⟹ ss ∝ us"
by (auto simp: refines_def)
lemma refines_map:
"ss ∝ map f ss"
by (auto simp: refines_def)
lemma refines_imp_map:
assumes "ss ∝ ts"
obtains f where "ts = map f ss"
proof -
note * = assms[unfolded refines_def]
let ?P = "λs i. (i < length ss ∧ ss ! i = s)" let ?f = "λs. ts ! (SOME i. ?P s i)"
{ fix i assume "i < length ss"
then have "ts ! i = ?f (ss ! i)" using conjunct1[OF *]
conjunct2[OF *, THEN spec[of _ i], THEN spec[of _ "SOME j. ?P (ss ! i) j"]] someI[of "?P (ss ! i)" i]
by auto
}
then show ?thesis using conjunct1[OF *] by (auto intro!: that[of "?f"] nth_equalityI)
qed
definition imbalance :: "'a list ⇒ nat" where
"imbalance ts = card (set ts)"
lemma imbalance_def':
"imbalance xs = card { i. i < length xs ∧ (∀j. j < length xs ∧ xs ! i = xs ! j ⟶ i ≤ j) }"
proof (induct xs rule: List.rev_induct)
case (snoc x xs)
have "{ i. i < length (xs @ [x]) ∧ (∀j. j < length (xs @ [x]) ∧ (xs @ [x]) ! i = (xs @ [x]) ! j ⟶ i ≤ j) } =
{ i. i < length xs ∧ (∀j. j < length xs ∧ xs ! i = xs ! j ⟶ i ≤ j) } ∪ { i. i = length xs ∧ x ∉ set xs }"
by (simp add: set_eq_iff less_Suc_eq dnf imp_conjL nth_append)
(metis cancel_comm_monoid_add_class.diff_cancel in_set_conv_nth nth_Cons_0)
then show ?case using snoc by (simp add: imbalance_def card_insert_if)
qed (auto simp: imbalance_def)
lemma imbalance_mono: "set ss ⊆ set ts ⟹ imbalance ss ≤ imbalance ts"
by (simp add: imbalance_def card_mono)
lemma refines_imbalance_mono:
"ss ∝ ts ⟹ imbalance ss ≥ imbalance ts"
unfolding refines_def imbalance_def' by (intro card_mono) (simp_all add: Collect_mono)
lemma refines_imbalance_strict_mono:
"ss ∝ ts ⟹ ¬ ts ∝ ss ⟹ imbalance ss > imbalance ts"
unfolding refines_def imbalance_def'
proof (intro psubset_card_mono psubsetI, goal_cases)
case 3 obtain i j where ij: "i < length ss" "j < length ss" "ts ! i = ts ! j" "ss ! i ≠ ss ! j"
using conjunct1[OF 3(1)] 3(2) by auto
define f where "f ≡ λi. SOME j. j < length ss ∧ ss ! j = ss ! i ∧ (∀i. ss ! j = ss ! i ⟶ j ≤ i)"
let ?ssi = "{i. i < length ss ∧ (∀j. j < length ss ∧ ss ! i = ss ! j ⟶ i ≤ j)}"
let ?tsi = "{i. i < length ts ∧ (∀j. j < length ts ∧ ts ! i = ts ! j ⟶ i ≤ j)}"
note f_def = fun_cong[OF f_def[unfolded atomize_eq]]
{ fix i assume "i < length ss"
then have "∃i'. i' < length ss ∧ ss ! i' = ss ! i ∧ (∀i. ss ! i' = ss ! i ⟶ i' ≤ i)"
proof (induct i rule: less_induct)
case (less i) then show ?case
by (cases "i < length ss ∧ ss ! i = ss ! i ∧ (∀j. ss ! i = ss ! j ⟶ i ≤ j)") auto
qed
then have "f i < length ss" "ss ! f i = ss ! i" "⋀j. ss ! f i = ss ! j ⟹ f i ≤ j"
using someI[of "λj. j < length ss ∧ ss ! j = ss ! i ∧ (∀i. ss ! j = ss ! i ⟶ j ≤ i)", folded f_def]
by auto
then have "f i < length ss" "ss ! f i = ss ! i" "f i ∈ ?ssi" "f i ∈ ?tsi ⟹ ts ! f i = ts ! i"
using 3(1) by (auto simp: ‹i < length ss›)
} note * = this[OF ij(1)] this[OF ij(2)]
with ij(1,2,3,4) 3(1)[THEN conjunct1]
3(1)[THEN conjunct2, rule_format, of i "f i"]
3(1)[THEN conjunct2, rule_format, of j "f j"]
have "f i ∈ ?ssi" "f j ∈ ?ssi" "ts ! f i = ts ! f j" "f i ≠ f j" by metis+
moreover from this(3,4) have "f i ∉ ?tsi ∨ f j ∉ ?tsi" using *(4,8) ij(3)
by (metis (mono_tags, lifting) dual_order.antisym mem_Collect_eq)
ultimately show ?case by argo
qed (simp_all add: Collect_mono)
lemma refines_take:
"ss ∝ ts ⟹ take n ss ∝ take n ts"
unfolding refines_def by (intro conjI impI allI; elim conjE) (simp_all add: refines_def)
lemma refines_drop:
"ss ∝ ts ⟹ drop n ss ∝ drop n ts"
unfolding refines_def
proof ((intro conjI impI allI; elim conjE), goal_cases)
case (2 i j) show ?case using 2(1,3-) 2(2)[rule_format, of "i + n" "j + n"]
by (auto simp: less_diff_eq less_diff_conv ac_simps)
qed simp
subsection ‹Abstract Rewriting›
lemma join_finite:
assumes "CR R" "finite X" "⋀x y. x ∈ X ⟹ y ∈ X ⟹ (x, y) ∈ R⇧↔⇧*"
obtains z where "⋀x. x ∈ X ⟹ (x, z) ∈ R⇧*"
using assms(2,1,3)
proof (induct X arbitrary: thesis)
case (insert x X)
then show ?case
proof (cases "X = {}")
case False
then obtain x' where "x' ∈ X" by auto
obtain z where *: "x' ∈ X ⟹ (x', z) ∈ R⇧*" for x' using insert by (metis insert_iff)
from this[of x'] ‹x' ∈ X› insert(6)[of x x'] have "(x, z) ∈ R⇧↔⇧*"
by (metis insert_iff converse_rtrancl_into_rtrancl conversionI' conversion_rtrancl)
with ‹CR R› obtain z' where "(x, z') ∈ R⇧*" "(z, z') ∈ R⇧*" by (auto simp: CR_iff_conversion_imp_join)
then show ?thesis by (auto intro!: insert(4)[of z'] dest: *)
qed auto
qed simp
lemma balance_sequence:
assumes "CR R"
obtains (ts) ts where "length ss = length ts"
"⋀i. i < length ss ⟹ (ss ! i, ts ! i) ∈ R⇧*"
"⋀i j. i < length ss ⟹ j < length ss ⟹ (ss ! i, ss ! j) ∈ R⇧↔⇧* ⟹ ts ! i = ts ! j"
proof -
define f where "f s ≡ SOME u. ∀t ∈ { t ∈ set ss. (s, t) ∈ R⇧↔⇧* }. (t, u) ∈ R⇧* " for s
{ fix i assume "i < length ss"
have "∀t ∈ { t ∈ set ss. (ss ! i, t) ∈ R⇧↔⇧* }. (t, f (ss ! i)) ∈ R⇧*"
unfolding f_def using join_finite[OF ‹CR R›, of "{ t ∈ set ss. (ss ! i, t) ∈ R⇧↔⇧* }"]
by (rule someI_ex) (auto, metis conversion_inv conversion_rtrancl rtrancl_trans)
with ‹i < length ss› have "(ss ! i, f (ss ! i)) ∈ R⇧*" by auto
} note [intro] = this
moreover {
fix i j assume "i < length ss" "j < length ss" "(ss ! i, ss ! j) ∈ R⇧↔⇧*"
then have "{ t ∈ set ss. (ss ! i, t) ∈ R⇧↔⇧* } = { t ∈ set ss. (ss ! j, t) ∈ R⇧↔⇧* }"
by auto (metis conversion_inv conversion_rtrancl rtrancl_trans)+
then have "f (ss ! i) = f (ss ! j)" by (auto simp: f_def)
} note [intro] = this
show ?thesis by (auto intro!: ts[of "map f ss"])
qed
lemma balance_sequences:
assumes "CR R" and [simp]: "length ts = length ss" "length us = length ss" and
p: "⋀i. i < length ss ⟹ (ss ! i, ts ! i) ∈ R⇧*" "⋀i. i < length ss ⟹ (ss ! i, us ! i) ∈ R⇧*"
obtains (vs) vs where
"length vs = length ss"
"⋀i. i < length ss ⟹ (ts ! i, vs ! i) ∈ R⇧*" "⋀i. i < length ss ⟹ (us ! i, vs ! i) ∈ R⇧*"
"refines ts vs" "refines us vs"
proof -
from balance_sequence[OF ‹CR R›, of "ts @ us"]
obtain vs where l: "length (ts @ us) = length vs" and
r: "⋀i. i < length (ts @ us) ⟹ ((ts @ us) ! i, vs ! i) ∈ R⇧*" and
e: "⋀i j. i < length (ts @ us) ⟹ j < length (ts @ us) ⟹ ((ts @ us) ! i, (ts @ us) ! j) ∈ R⇧↔⇧* ⟹ vs ! i = vs ! j"
by blast
{ fix i assume *: "i < length ss"
from * have "(ts ! i, us ! i) ∈ R⇧↔⇧*" using p[of i]
by (metis CR_imp_conversionIff_join assms(1) conversionI' conversion_rtrancl joinI_right rtrancl_trans)
with * have "vs ! (length ss + i) = vs ! i"
using e[of i "length ss + i"] by (auto simp: nth_append)
} note lp[simp] = this
show ?thesis
proof (intro vs[of "take (length ss) vs"], goal_cases)
case (2 i) then show ?case using l r[of i] by (auto simp: nth_append)
next
case (3 i) with 3 show ?case using l r[of "length ss + i"] by (auto simp: nth_append)
next
case 4
then show ?case using l by (auto simp: refines_def nth_append intro!: e)
next
case 5
{ fix i j assume "i < length ss" "j < length ss" "(us ! i, us ! j) ∈ R⇧↔⇧*"
then have "vs ! i = vs ! j"
using e[of "length ss + i" "length ss + j"] by (simp add: nth_append)
}
then show ?case using l by (auto simp: refines_def nth_append)
qed (auto simp: l[symmetric])
qed
lemma rtrancl_on_iff_rtrancl_restr:
assumes "⋀x y. x ∈ A ⟹ (x, y) ∈ R ⟹ y ∈ A"
"(x, y) ∈ R⇧*" "x ∈ A"
shows "(x, y) ∈ (Restr R A)⇧* ∧ y ∈ A"
using assms(2,3)
proof (induct y rule: rtrancl_induct)
case (step y z) then show ?case by (auto intro!: rtrancl_into_rtrancl[of _ y _ z] simp: assms(1))
qed auto
lemma CR_on_iff_CR_Restr:
assumes "⋀x y. x ∈ A ⟹ (x, y) ∈ R ⟹ y ∈ A"
shows "CR_on R A ⟷ CR (Restr R A)"
proof ((standard; standard), goal_cases)
let ?R' = "Restr R A"
note * = rtrancl_on_iff_rtrancl_restr[OF assms]
have *: "(s, t) ∈ R⇧* ⟹ s ∈ A ⟹ (s, t) ∈ ?R'⇧* ∧ t ∈ A" for s t
using assms rtrancl_on_iff_rtrancl_restr by metis
{
case (1 s t u) then show ?case
proof (cases "s ∈ A")
case True
with 1(3,4) have "(s, t) ∈ R⇧*" "t ∈ A" "(s, u) ∈ R⇧*" "u ∈ A"
using *[of s t] *[of s u] rtrancl_mono[of ?R' R] by auto
then show ?thesis
using True 1(1)[unfolded CR_on_def, rule_format, of s t u] by (auto dest!: joinD *)
next
case False
then have "s = t" "s = u" using 1 by (metis IntD2 converse_rtranclE mem_Sigma_iff)+
then show ?thesis by auto
qed
next
case (2 s t u)
obtain v where "(t, v) ∈ ?R'⇧*" "(u, v) ∈ ?R'⇧*" using *[OF 2(3,2)] *[OF 2(4,2)] 2(1) by auto
then show ?case using rtrancl_mono[of ?R' R] by auto
}
qed
subsection ‹Bijection between 'a and 'a option for infinite types›
lemma infinite_option_bijection:
assumes "infinite (UNIV :: 'a set)" shows "∃f :: 'a ⇒ 'a option. bij f"
proof -
from infinite_countable_subset[OF assms] obtain g :: "nat ⇒ 'a" where g: "inj g" "range g ⊆ UNIV" by blast
let ?f = "λx. if x ∈ range g then (case inv g x of 0 ⇒ None | Suc n ⇒ Some (g n)) else Some x"
have "?f x = ?f y ⟹ x = y" for x y using g(1) by (auto split: nat.splits if_splits simp: inj_on_def) auto
moreover have "∃x. ?f x = y" for y
apply (cases y)
subgoal using g(1) by (intro exI[of _ "g 0"]) auto
subgoal for y using g
apply (cases "y ∈ range g")
subgoal by (intro exI[of _ "g (Suc (inv g y))"]) auto
subgoal by auto
done
done
ultimately have "bij ?f" unfolding bij_def surj_def by (intro conjI injI) metis+
then show ?thesis by blast
qed
definition to_option :: "'a :: infinite ⇒ 'a option" where
"to_option = (SOME f. bij f)"
definition from_option :: "'a :: infinite option ⇒ 'a" where
"from_option = inv to_option"
lemma bij_from_option: "bij to_option"
unfolding to_option_def using someI_ex[OF infinite_option_bijection[OF infinite_UNIV]] .
lemma from_to_option_comp[simp]: "from_option ∘ to_option = id"
unfolding from_option_def by (intro inv_o_cancel bij_is_inj bij_from_option)
lemma from_to_option[simp]: "from_option (to_option x) = x"
by (simp add: pointfree_idE)
lemma to_from_option_comp[simp]: "to_option ∘ from_option = id"
unfolding from_option_def surj_iff[symmetric] by (intro bij_is_surj bij_from_option)
lemma to_from_option[simp]: "to_option (from_option x) = x"
by (simp add: pointfree_idE)
lemma var_subst_comp: "t ⋅ (Var ∘ f) ⋅ g = t ⋅ (g ∘ f)"
by (simp add: comp_def subst_subst_compose[symmetric] subst_compose_def del: subst_subst_compose)
subsection ‹More polymorphic rewriting›
inductive_set rstep' :: "('f, 'v) trs ⇒ ('f, 'w) term rel" for R where
rstep' [intro]: "(l, r) ∈ R ⟹ (C⟨l ⋅ σ⟩, C⟨r ⋅ σ⟩) ∈ rstep' R"
lemma rstep_eq_rstep': "rstep R = rstep' R"
by (auto elim: rstep'.cases)
lemma rstep'_mono:
assumes "(s, t) ∈ rstep' R" shows "(C⟨s⟩, C⟨t⟩) ∈ rstep' R"
proof -
from assms obtain D l r σ where "(l, r) ∈ R" "s = D⟨l ⋅ σ⟩" "t = D⟨r ⋅ σ⟩" by (auto simp add: rstep'.simps)
then show ?thesis using rstep'[of l r R "C ∘⇩c D" σ] by simp
qed
lemma ctxt_closed_rstep' [simp]:
shows "ctxt.closed (rstep' R)"
by (auto simp: ctxt.closed_def rstep'_mono elim: ctxt.closure.induct)
lemma rstep'_stable:
assumes "(s, t) ∈ rstep' R" shows "(s ⋅ σ, t ⋅ σ) ∈ rstep' R"
proof -
from assms obtain C l r τ where "(l, r) ∈ R" "s = C⟨l ⋅ τ⟩" "t = C⟨r ⋅ τ⟩" by (auto simp add: rstep'.simps)
then show ?thesis using rstep'[of l r R "C ⋅⇩c σ" "τ ∘⇩s σ"] by simp
qed
lemma rsteps'_stable:
"(s, t) ∈ (rstep' R)⇧* ⟹ (s ⋅ σ, t ⋅ σ) ∈ (rstep' R)⇧*"
by (induct rule: rtrancl_induct) (auto dest: rstep'_stable[of _ _ _ σ])
lemma rstep'_sub_vars:
assumes "(s, t) ∈ (rstep' R)⇧*" "wf_trs R"
shows "vars_term t ⊆ vars_term s"
using assms(1)
proof (induction rule: converse_rtrancl_induct)
case (step y z)
obtain l r C σ where props: "(l, r) ∈ R" "y = C⟨l ⋅ σ⟩" "z = C⟨r ⋅ σ⟩" "vars_term r ⊆ vars_term l"
using step(1) assms(2) unfolding wf_trs_def by (auto elim: rstep'.cases)
then have "vars_term z ⊆ vars_term y"
using var_cond_stable[OF props(4), of σ] vars_term_ctxt_apply[of C "_ ⋅ σ"] by auto
then show ?case using step(3) by simp
qed simp
inductive_set rstep_r_p_s' :: "('f, 'v) trs ⇒ ('f, 'v) rule ⇒ pos ⇒ ('f, 'v, 'w) gsubst ⇒ ('f, 'w) term rel"
for R r p σ where
rstep_r_p_s' [intro]: "r ∈ R ⟹ p = hole_pos C ⟹ (C⟨fst r ⋅ σ⟩, C⟨snd r ⋅ σ⟩) ∈ rstep_r_p_s' R r p σ"
declare rstep_r_p_s'.cases [elim]
lemma rstep_r_p_s'I:
"r ∈ R ⟹ p = hole_pos C ⟹ s = C⟨fst r ⋅ σ⟩ ⟹ t = C⟨snd r ⋅ σ⟩ ⟹ (s, t) ∈ rstep_r_p_s' R r p σ"
by auto
lemma rstep_r_p_s'E:
assumes "(s, t) ∈ rstep_r_p_s' R r p σ"
obtains C where "r ∈ R" "p = hole_pos C" "s = C⟨fst r ⋅ σ⟩" "t = C⟨snd r ⋅ σ⟩"
using rstep_r_p_s'.cases assms by metis
lemma rstep_r_p_s_eq_rstep_r_p_s': "rstep_r_p_s R r p σ = rstep_r_p_s' R r p σ"
by (auto simp: rstep_r_p_s_def rstep_r_p_s'.simps) (metis hole_pos_ctxt_of_pos_term)
lemma rstep'_iff_rstep_r_p_s':
"(s, t) ∈ rstep' R ⟷ (∃l r p σ. (s, t) ∈ rstep_r_p_s' R (l, r) p σ)"
by (auto simp: rstep'.simps rstep_r_p_s'.simps)
lemma rstep_r_p_s'_deterministic:
assumes "wf_trs R" "(s, t) ∈ rstep_r_p_s' R r p σ" "(s, t') ∈ rstep_r_p_s' R r p τ"
shows "t = t'"
proof -
obtain C where 1: "r ∈ R" "s = C⟨fst r ⋅ σ⟩" "t = C⟨snd r ⋅ σ⟩" "p = hole_pos C"
using assms(2) by (auto simp: rstep_r_p_s'.simps)
obtain D where 2: "s = D⟨fst r ⋅ τ⟩" "t' = D⟨snd r ⋅ τ⟩" "p = hole_pos D"
using assms(3) by (auto simp: rstep_r_p_s'.simps)
obtain lhs rhs where 3: "r = (lhs, rhs)" by force
show ?thesis using 1(1) 2(1,3) unfolding 1(2,3,4) 2(2) 3
proof (induct C arbitrary: D)
case Hole have [simp]: "D = □" using Hole by (cases D) auto
then show ?case using ‹wf_trs R› Hole by (auto simp: wf_trs_def term_subst_eq_conv)
next
case (More f ss1 C' ss2) then show ?case by (cases D) auto
qed
qed
lemma rstep_r_p_s'_preserves_funas_terms:
assumes "wf_trs R" "(s, t) ∈ rstep_r_p_s' R r p σ" "funas_trs R ⊆ F" "funas_term s ⊆ F"
shows "funas_term t ⊆ F"
proof -
obtain C where 1: "r ∈ R" "s = C⟨fst r ⋅ σ⟩" "t = C⟨snd r ⋅ σ⟩" "p = hole_pos C"
using assms(2) by (auto simp: rstep_r_p_s'.simps)
then have "funas_ctxt C ⊆ F" using assms(4) by auto
obtain lhs rhs where 3: "r = (lhs, rhs)" by force
show ?thesis using 1(1) using assms(1,3,4)
by (force simp: 1(2,3,4) 3 funas_term_subst funas_trs_def funas_rule_def wf_trs_def)
qed
lemma rstep'_preserves_funas_terms:
"funas_trs R ⊆ F ⟹ funas_term s ⊆ F ⟹ (s, t) ∈ rstep' R ⟹ wf_trs R ⟹ funas_term t ⊆ F"
unfolding rstep'_iff_rstep_r_p_s' using rstep_r_p_s'_preserves_funas_terms by blast
lemma rstep_r_p_s'_stable:
"(s, t) ∈ rstep_r_p_s' R r p σ ⟹ (s ⋅ τ, t ⋅ τ) ∈ rstep_r_p_s' R r p (σ ∘⇩s τ)"
by (auto elim!: rstep_r_p_s'E intro!: rstep_r_p_s'I simp: subst_subst simp del: subst_subst_compose)
lemma rstep_r_p_s'_mono:
"(s, t) ∈ rstep_r_p_s' R r p σ ⟹ (C⟨s⟩, C⟨t⟩) ∈ rstep_r_p_s' R r (hole_pos C @ p) σ"
proof (elim rstep_r_p_s'E)
fix D assume "r ∈ R" "p = hole_pos D" "s = D⟨fst r ⋅ σ⟩" "t = D⟨snd r ⋅ σ⟩"
then show "(C⟨s⟩, C⟨t⟩) ∈ rstep_r_p_s' R r (hole_pos C @ p) σ"
using rstep_r_p_s'I[of r R "hole_pos C @ p" "C ∘⇩c D" "C⟨s⟩" σ "C⟨t⟩"] by simp
qed
lemma rstep_r_p_s'_argE:
assumes "(s, t) ∈ rstep_r_p_s' R (l, r) (i # p) σ"
obtains f ss ti where "s = Fun f ss" "i < length ss" "t = Fun f (ss[i := ti])" "(ss ! i, ti) ∈ rstep_r_p_s' R (l, r) p σ"
proof -
thm upd_conv_take_nth_drop
from assms obtain C where *: "hole_pos C = i # p" "s = C⟨l ⋅ σ⟩" "t = C⟨r ⋅ σ⟩" "(l, r) ∈ R" by (auto elim: rstep_r_p_s'E)
then obtain f ls D rs where [simp]: "C = More f ls D rs" "i = length ls" by (cases C) auto
let ?ss = "ls @ D⟨l ⋅ σ⟩ # rs" and ?ts = "ls @ D⟨r ⋅ σ⟩ # rs" and ?ti = "D⟨r ⋅ σ⟩"
have "s = Fun f ?ss" "i < length ?ss" "t = Fun f (list_update ?ss i ?ti)" using * by simp_all
moreover have "(?ss ! i, ?ti) ∈ rstep_r_p_s' R (l, r) p σ" using * by (auto intro: rstep_r_p_s'I)
ultimately show ?thesis ..
qed
lemma rstep_r_p_s'_argI:
assumes "i < length ss" "(ss ! i, ti) ∈ rstep_r_p_s' R r p σ"
shows "(Fun f ss, Fun f (ss[i := ti])) ∈ rstep_r_p_s' R r (i # p) σ"
using assms(1) rstep_r_p_s'_mono[OF assms(2), of "More f (take i ss) Hole (drop (Suc i) ss)"]
by (auto simp: id_take_nth_drop[symmetric] upd_conv_take_nth_drop min_def)
lemma wf_trs_implies_funposs:
assumes "wf_trs R" "(s, t) ∈ rstep_r_p_s' R (l, r) p σ"
shows "p ∈ funposs s"
proof -
obtain C where *: "(l, r) ∈ R" "s = C⟨l ⋅ σ⟩" "p = hole_pos C" using assms by auto
then show ?thesis
using assms hole_pos_in_filled_funposs[of "l ⋅ σ" C Var] by (force simp: wf_trs_def')
qed
lemma NF_Var':
assumes "wf_trs R"
shows "(Var x, t) ∉ rstep' R"
unfolding rstep'_iff_rstep_r_p_s' by (auto dest: wf_trs_implies_funposs[OF assms])
lemma fill_holes_rsteps:
assumes "num_holes C = length ss" "num_holes C = length ts"
"⋀i. i < length ss ⟹ (ss ! i, ts ! i) ∈ (rstep' ℛ)⇧*"
shows "(fill_holes C ss, fill_holes C ts) ∈ (rstep' ℛ)⇧*"
using assms
proof (induct C ss ts rule: fill_holes_induct2)
case (MFun f Cs xs ys)
show ?case using MFun(1,2,4)
by (auto intro!: MFun(3) args_steps_imp_steps simp: partition_by_nth_nth)
qed auto
subsection ‹@{term partition_by} stuff›
fun partition_by_idcs :: "nat list ⇒ nat ⇒ (nat × nat)" where
"partition_by_idcs (y # ys) i =
(if i < y then (0, i) else let (j, k) = partition_by_idcs ys (i - y) in (Suc j, k))"
definition partition_by_idx1 (infix "@⇩1" 105) where
"ys @⇩1 i = fst (partition_by_idcs ys i)"
definition partition_by_idx2 (infix "@⇩2" 105) where
"ys @⇩2 i = snd (partition_by_idcs ys i)"
lemma partition_by_predicate:
assumes "i < length xs"
shows "partition_by (filter P xs) (map (λx. if P x then Suc 0 else 0) xs) ! i = (if P (xs ! i) then [xs ! i] else [])"
using assms by (induct xs arbitrary: i) (auto simp: less_Suc_eq_0_disj)
lemma nth_by_partition_by:
"length xs = sum_list ys ⟹ i < sum_list ys ⟹ xs ! i = partition_by xs ys ! ys @⇩1 i ! ys @⇩2 i"
apply (induct ys arbitrary: i xs)
apply (auto simp: partition_by_idx1_def partition_by_idx2_def split: prod.splits)
by (metis diff_add_inverse fst_conv le_add1 length_drop less_diff_conv2 linordered_field_class.sign_simps(2) linordered_semidom_class.add_diff_inverse nth_drop snd_conv)
lemma nth_concat_by_shape:
assumes "ys = map length xss" "i < sum_list ys"
shows "concat xss ! i = xss ! ys @⇩1 i ! ys @⇩2 i"
using nth_by_partition_by[of "concat xss" ys i] partition_by_concat_id[of xss ys] assms
by (auto simp: length_concat)
lemma list_update_by_partition_by:
"length xs = sum_list ys ⟹ i < sum_list ys ⟹
xs[i := x] = concat (partition_by xs ys[ys @⇩1 i := (partition_by xs ys ! ys @⇩1 i)[ys @⇩2 i := x]])"
proof (induct ys arbitrary: i xs)
case (Cons y ys) show ?case
using list_update_append[of "take y xs" "drop y xs" i x] Cons(1)[of "drop y xs" "i - y"] Cons(2,3)
by (auto simp: partition_by_idx1_def partition_by_idx2_def less_diff_conv2 min.absorb2 split: prod.splits)
qed auto
lemma list_update_concat_by_shape:
assumes "ys = map length xss" "i < sum_list ys"
shows "concat xss[i := x] = concat (xss[ys @⇩1 i := (xss ! ys @⇩1 i)[ys @⇩2 i := x]])"
using list_update_by_partition_by[of "concat xss" ys i] partition_by_concat_id[of xss ys] assms
by (auto simp: length_concat)
lemma partition_by_idx1_bound:
"i < sum_list ys ⟹ ys @⇩1 i < length ys"
apply (induct ys arbitrary: i)
apply (auto simp: partition_by_idx1_def split: prod.splits)
by (metis add_diff_inverse_nat add_less_imp_less_left fst_conv)
lemma partition_by_idx2_bound:
"i < sum_list ys ⟹ ys @⇩2 i < ys ! ys @⇩1 i"
apply (induct ys arbitrary: i)
apply (auto simp: partition_by_idx1_def partition_by_idx2_def split: prod.splits)
by (metis add_diff_inverse_nat fst_conv nat_add_left_cancel_less snd_conv)
subsection ‹From multihole contexts to terms and back›
fun mctxt_term_conv :: "('f, 'v) mctxt ⇒ ('f, 'v option) term" where
"mctxt_term_conv MHole = Var None"
| "mctxt_term_conv (MVar v) = Var (Some v)"
| "mctxt_term_conv (MFun f Cs) = Fun f (map mctxt_term_conv Cs)"
fun term_mctxt_conv :: "('f, 'v option) term ⇒ ('f, 'v) mctxt" where
"term_mctxt_conv (Var None) = MHole"
| "term_mctxt_conv (Var (Some v)) = MVar v"
| "term_mctxt_conv (Fun f ts) = MFun f (map term_mctxt_conv ts)"
lemma mctxt_term_conv_inv [simp]:
"mctxt_term_conv (term_mctxt_conv t) = t"
by (induct t rule: term_mctxt_conv.induct) (auto simp: map_idI)
lemma term_mctxt_conv_inv [simp]:
"term_mctxt_conv (mctxt_term_conv t) = t"
by (induct t rule: mctxt_term_conv.induct) (auto simp: map_idI)
lemma mctxt_term_conv_bij:
"bij mctxt_term_conv"
by (auto intro!: o_bij[of term_mctxt_conv mctxt_term_conv])
lemma term_mctxt_conv_bij:
"bij term_mctxt_conv"
by (auto intro!: o_bij[of mctxt_term_conv term_mctxt_conv])
lemma mctxt_term_conv_mctxt_of_term[simp]:
"mctxt_term_conv (mctxt_of_term t) = t ⋅ (Var ∘ Some)"
by (induct t) auto
lemma term_mctxt_conv_mctxt_of_term_conv:
"term_mctxt_conv (t ⋅ (Var ∘ Some)) = mctxt_of_term t"
by (induct t) auto
lemma weak_match_mctxt_term_conv_mono:
"C ≤ D ⟹ weak_match (mctxt_term_conv D) (mctxt_term_conv C)"
by (induct C D rule: less_eq_mctxt_induct) auto
definition term_of_mctxt_subst where "term_of_mctxt_subst = case_option (term_of_mctxt MHole) Var"
lemma term_of_mctxt_to_mctxt_term_conv:
"term_of_mctxt C = mctxt_term_conv C ⋅ term_of_mctxt_subst"
by (induct C) (auto simp: term_of_mctxt_subst_def)
lemma poss_mctxt_term_conv[simp]:
"poss (mctxt_term_conv C) = all_poss_mctxt C"
by (induct C) auto
lemma funas_term_mctxt_term_conv[simp]:
"funas_term (mctxt_term_conv C) = funas_mctxt C"
by (induct C) auto
lemma all_poss_mctxt_term_mctxt_conv[simp]:
"all_poss_mctxt (term_mctxt_conv t) = poss t"
by (induct t rule: term_mctxt_conv.induct) auto
lemma funas_mctxt_term_mctxt_conv[simp]:
"funas_mctxt (term_mctxt_conv t) = funas_term t"
by (induct t rule: term_mctxt_conv.induct) auto
lemma subm_at_term_mctxt_conv:
"p ∈ poss t ⟹ subm_at (term_mctxt_conv t) p = term_mctxt_conv (subt_at t p)"
by (induct t p rule: subt_at.induct) auto
lemma subt_at_mctxt_term_conv:
"p ∈ all_poss_mctxt C ⟹ subt_at (mctxt_term_conv C) p = mctxt_term_conv (subm_at C p)"
by (induct C p rule: subm_at.induct) auto
lemma subm_at_subt_at_conv:
"p ∈ all_poss_mctxt C ⟹ subm_at C p = term_mctxt_conv (subt_at (mctxt_term_conv C) p)"
by (induct C p rule: subm_at.induct) auto
lemma mctxt_term_conv_fill_holes_mctxt:
assumes "num_holes C = length Cs"
shows "mctxt_term_conv (fill_holes_mctxt C Cs) = fill_holes (map_vars_mctxt Some C) (map mctxt_term_conv Cs)"
using assms by (induct C Cs rule: fill_holes_induct) (auto simp: comp_def)
lemma mctxt_term_conv_map_vars_mctxt_subst:
shows "mctxt_term_conv (map_vars_mctxt f C) = mctxt_term_conv C ⋅ (Var ∘ map_option f)"
by (induct C) auto
lemma fill_fill_holes_mctxt:
assumes "length Cs' = num_holes L'" "length Cs = num_holes (fill_holes_mctxt L' Cs')"
shows "fill_holes_mctxt (fill_holes_mctxt L' Cs') Cs = fill_holes_mctxt L'
(map (λ(D, Es). fill_holes_mctxt D Es) (zip Cs' (partition_holes Cs Cs')))" (is "?L = ?R")
proof -
note fill_holes_mctxt_fill_holes
have "fill_holes (fill_holes_mctxt (map_vars_mctxt Some L') (map (map_vars_mctxt Some) Cs'))
(map mctxt_term_conv Cs) = fill_holes (map_vars_mctxt Some L')
(map (λx. mctxt_term_conv (fill_holes_mctxt (Cs' ! x) (partition_holes Cs Cs' ! x))) [0..<num_holes L'])"
using assms by (subst fill_holes_mctxt_fill_holes)
(auto simp: comp_def mctxt_term_conv_fill_holes_mctxt length_partition_by_nth num_holes_fill_holes_mctxt intro!: arg_cong[of _ _ "fill_holes _"])
then have "term_mctxt_conv (mctxt_term_conv ?L) = term_mctxt_conv (mctxt_term_conv ?R)"
using assms by (intro arg_cong[of _ _ "term_mctxt_conv"]) (auto simp: zip_nth_conv comp_def
mctxt_term_conv_fill_holes_mctxt map_vars_mctxt_fill_holes_mctxt)
then show ?thesis by simp
qed
inductive_set mrstep :: "('f, 'w) trs ⇒ ('f, 'v) mctxt rel" for R where
mrstep [intro]: "(mctxt_term_conv C, mctxt_term_conv D) ∈ rstep' R ⟹ (C, D) ∈ mrstep R"
lemma mrstepD: "(C, D) ∈ mrstep R ⟹ (mctxt_term_conv C, mctxt_term_conv D) ∈ rstep' R"
by (rule mrstep.induct)
lemma mrstepI_inf:
assumes "(mctxt_term_conv C ⋅ (Var ∘ from_option), mctxt_term_conv D ⋅ (Var ∘ from_option)) ∈ rstep R"
shows "(C, D) ∈ mrstep R"
using rstep'_stable[OF assms[unfolded rstep_eq_rstep'], of "Var ∘ to_option"]
by (intro mrstep.intros) (auto simp del: subst_subst_compose simp: subst_subst subst_compose_def)
lemma mrstepD_inf:
"(C, D) ∈ mrstep R ⟹ (mctxt_term_conv C ⋅ (Var ∘ from_option), mctxt_term_conv D ⋅ (Var ∘ from_option)) ∈ rstep R"
by (metis rstep'_stable mrstepD rstep_eq_rstep')
lemma NF_MVar_MHole:
assumes "wf_trs R" and "C = MVar x ∨ C = MHole"
shows "(C, D) ∉ mrstep R"
using NF_Var'[OF assms(1)] assms(2) by (force dest: mrstepD)
definition funposs_mctxt :: "('f, 'v) mctxt ⇒ pos set" where
"funposs_mctxt C = funposs (mctxt_term_conv C)"
lemma funposs_mctxt_subset_poss_mctxt:
"funposs_mctxt C ⊆ poss_mctxt C"
by (induct C) (force simp: funposs_mctxt_def)+
lemma funposs_mctxt_subset_all_poss_mctxt:
"funposs_mctxt C ⊆ all_poss_mctxt C"
by (induct C) (force simp: funposs_mctxt_def)+
lemma funposs_mctxt_mono:
"C ≤ D ⟹ p ∈ funposs_mctxt C ⟹ p ∈ funposs_mctxt D"
unfolding less_eq_mctxt_prime funposs_mctxt_def
by (induct C D arbitrary: p rule: less_eq_mctxt'.induct) auto
lemma funposs_mctxt_compat:
"C ≤ D ⟹ p ∈ poss_mctxt C ⟹ p ∈ funposs_mctxt D ⟹ p ∈ funposs_mctxt C"
unfolding less_eq_mctxt_prime funposs_mctxt_def
by (induct C D arbitrary: p rule: less_eq_mctxt'.induct) auto
lemma funposs_mctxt_mctxt_of_term[simp]:
"funposs_mctxt (mctxt_of_term t) = funposs t"
by (induct t) (auto simp: funposs_mctxt_def)
lemma proper_prefix_hole_poss_imp_funposs:
assumes "p ∈ hole_poss C" "q <⇩p p"
shows "q ∈ funposs_mctxt C"
using assms
apply (induct C arbitrary: p q; case_tac p; case_tac q)
apply (auto simp: funposs_mctxt_def)
apply (metis (no_types, hide_lams) lessThan_iff less_pos_simps(4) nth_mem list.exhaust)+
done
subsection ‹finiteness of prefixes›
lemma finite_set_Cons:
assumes A: "finite A" and B: "finite B"
shows "finite (set_Cons A B)"
proof -
have "set_Cons A B = case_prod (#) ` (A × B)" by (auto simp: set_Cons_def)
then show ?thesis
by (simp add: finite_imageI[OF finite_cartesian_product[OF A B],of "case_prod (#)"])
qed
lemma listset_finite:
assumes "∀A ∈ set As. finite A"
shows "finite (listset As)"
using assms
by (induct As) (auto simp: finite_set_Cons)
lemma elem_listset:
"xs ∈ listset As = (length xs = length As ∧ (∀i < length As. xs ! i ∈ As ! i))"
proof (induct As arbitrary: xs)
case (Cons A As xs) then show ?case
by (cases xs) (auto simp: set_Cons_def nth_Cons nat.splits)
qed auto
lemma finite_pre_mctxt:
fixes C :: "('f, 'v) mctxt"
shows "finite { N. N ≤ C }"
proof (induct C)
case MHole
have *: "{ N. N ≤ MHole } = { MHole }" by (auto simp: less_eq_mctxt_def)
show ?case by (simp add: *)
next
case (MVar x)
have *: "{ N. N ≤ MVar x } = { MHole, MVar x }"
by (auto simp: less_eq_mctxt_def split_ifs elim: mctxt_neq_mholeE)
show ?case by (simp add: *)
next
case (MFun f Cs)
have *: "{ N. N ≤ MFun f Cs } = { MHole } ∪ MFun f ` { Ds. Ds ∈ listset (map (λC. { N. N ≤ C }) Cs)}"
unfolding elem_listset
by (auto simp: image_def less_eq_mctxt_def split_ifs list_eq_iff_nth_eq elim!: mctxt_neq_mholeE) auto
show ?case
by (auto simp: * MFun listset_finite[of "map (λC. { N. N ≤ C }) Cs"])
qed
text ‹well-founded-ness of <›
fun mctxt_syms :: "('f, 'v) mctxt ⇒ nat" where
"mctxt_syms MHole = 0"
| "mctxt_syms (MVar v) = 1"
| "mctxt_syms (MFun f Cs) = 1 + sum_list (map mctxt_syms Cs)"
lemma mctxt_syms_mono:
"C ≤ D ⟹ mctxt_syms C ≤ mctxt_syms D"
by (induct D arbitrary: C; elim less_eq_mctxtE2)
(auto simp: map_upt_len_conv[of mctxt_syms,symmetric] intro: sum_list_mono)
lemma sum_list_strict_mono_aux:
fixes xs ys :: "nat list"
shows "length xs = length ys ⟹ (⋀i. i < length ys ⟹ xs ! i ≤ ys ! i) ⟹ sum_list xs < sum_list ys ∨ xs = ys"
proof (induct xs arbitrary: ys)
case (Cons x xs zs) note * = this
then show ?case
proof (cases zs)
case (Cons y ys)
have hd: "x ≤ y" and tl: "⋀i. i < length ys ⟹ xs ! i ≤ ys ! i"
using *(3) by (auto simp: Cons nth_Cons nat.splits)
show ?thesis using hd *(1)[OF _ tl] *(2) by (auto simp: nth_Cons Cons)
qed auto
qed auto
lemma mctxt_syms_strict_mono[simp]:
"C < D ⟹ mctxt_syms C < mctxt_syms D"
proof -
assume "C < D"
also have "C ≤ D ⟹ C = D ∨ mctxt_syms C < mctxt_syms D"
proof ((induct D arbitrary: C; elim less_eq_mctxtE2), goal_cases)
case (5 f Ds C Cs)
have "i < length Ds ⟹ mctxt_syms (Cs ! i) ≤ mctxt_syms (Ds ! i)" for i
using 5(1)[OF _ 5(4), of i] by (auto simp: 5(3))
then show "C = MFun f Ds ∨ mctxt_syms C < mctxt_syms (MFun f Ds)"
using 5(1)[OF _ 5(4)] sum_list_strict_mono_aux[of "map mctxt_syms Cs" "map mctxt_syms Ds"]
by (auto simp: list_eq_iff_nth_eq 5(2,3))
qed auto
ultimately show ?thesis by (auto simp: less_mctxt_def)
qed
lemma wf_less_mctxt [simp]:
"wf { (C :: ('f, 'v) mctxt, D). C < D }"
by (rule wf_subset[of "inv_image { (a, b). a < b } mctxt_syms"]) (auto simp: wf_less)
lemma map_zip2 [simp]:
"n = length xs ⟹ zip xs (replicate n y) = map (λx. (x,y)) xs"
by (induct xs arbitrary: n) auto
lemma map_zip1 [simp]:
"n = length ys ⟹ zip (replicate n x) ys = map (λy. (x,y)) ys"
by (induct ys arbitrary: n) auto
subsection ‹Hole positions, left to right›
fun hole_poss' :: "('f, 'v) mctxt ⇒ pos list" where
"hole_poss' (MVar x) = []"
| "hole_poss' MHole = [[]]"
| "hole_poss' (MFun f cs) = concat (map (λi . map ((#) i) (hole_poss' (cs ! i))) [0..<length cs])"
lemma set_hole_poss': "set (hole_poss' C) = hole_poss C"
by (induct C) auto
lemma length_hole_poss'[simp]: "length (hole_poss' C) = num_holes C"
by (induct C) (auto simp: length_concat intro!: arg_cong[of _ _ sum_list] nth_equalityI)
lemma hole_poss'_map_vars_mctxt[simp]:
"hole_poss' (map_vars_mctxt f C) = hole_poss' C"
by (induct C rule: hole_poss'.induct) (auto intro: arg_cong[of _ _ concat])
lemma subt_at_fill_holes:
assumes "length ts = num_holes C" and "i < num_holes C"
shows "subt_at (fill_holes C ts) (hole_poss' C ! i) = ts ! i"
using assms(1)[symmetric] assms(2)
proof (induct C ts arbitrary: i rule: fill_holes_induct)
case (MFun f Cs ts)
have "i < length (concat (map (λi. map ((#) i) (hole_poss' (Cs ! i))) [0..<length Cs]))"
using MFun arg_cong[OF map_nth, of "map num_holes" Cs] by (auto simp: length_concat comp_def)
then show ?case
by (auto simp: nth_map[symmetric] map_concat intro!: arg_cong[of _ _ "λx. concat x ! _"])
(insert MFun, auto intro!: nth_equalityI)
qed auto
lemma subm_at_fill_holes_mctxt:
assumes "length Ds = num_holes C" and "i < num_holes C"
shows "subm_at (fill_holes_mctxt C Ds) (hole_poss' C ! i) = Ds ! i"
using assms(1)[symmetric] assms(2)
proof (induct C Ds arbitrary: i rule: fill_holes_induct)
case (MFun f Cs Ds)
have "i < length (concat (map (λi. map ((#) i) (hole_poss' (Cs ! i))) [0..<length Cs]))"
using MFun arg_cong[OF map_nth, of "map num_holes" Cs] by (auto simp: length_concat comp_def)
then show ?case
by (auto simp: nth_map[symmetric] map_concat intro!: arg_cong[of _ _ "λx. concat x ! _"])
(insert MFun, auto intro!: nth_equalityI)
qed auto
lemma ctxt_of_pos_term_fill_holes:
assumes "num_holes C = length ts" "i < num_holes C"
shows "ctxt_of_pos_term (hole_poss' C ! i) (fill_holes C (ts[i := t])) =
ctxt_of_pos_term (hole_poss' C ! i) (fill_holes C ts)"
using assms
proof (induct C ts arbitrary: i rule: fill_holes_induct)
case (MFun f Cs ts)
then show ?case using partition_by_idx1_bound[of i "map num_holes Cs"] partition_by_idx2_bound[of i "map num_holes Cs"]
unfolding fill_holes.simps hole_poss'.simps num_holes.simps
apply (subst (1 2) nth_concat_by_shape, (simp add: comp_def map_upt_len_conv; fail)+)
apply (subst list_update_concat_by_shape, (simp add: comp_def map_upt_len_conv; fail)+)
apply (subst (1 2) nth_map, simp)
apply (subst (1 2) nth_map, simp)
apply (subst partition_by_concat_id)
apply (auto intro!: nth_equalityI simp: nth_list_update)
done
qed auto
lemma hole_poss_in_poss_fill_holes:
assumes "num_holes C = length ts" "i < num_holes C"
shows "hole_poss' C ! i ∈ poss (fill_holes C ts)"
proof -
have "hole_poss C ⊆ poss (fill_holes C ts)"
using all_poss_mctxt_mono[OF fill_holes_suffix[of C ts]] assms by (simp add: all_poss_mctxt_conv)
then show ?thesis using assms(2) set_hole_poss'[of C] by auto
qed
lemma replace_at_fill_holes:
assumes "num_holes C = length ts" "i < num_holes C"
shows "replace_at (fill_holes C ts) (hole_poss' C ! i) ti = fill_holes C (ts[i := ti])"
proof -
show ?thesis using assms ctxt_supt_id[OF hole_poss_in_poss_fill_holes, of C "ts[i := ti]" i]
by (simp add: ctxt_of_pos_term_fill_holes subt_at_fill_holes)
qed
lemma fill_holes_rstep_r_p_s':
assumes "num_holes C = length ss" "i < num_holes C" "(ss ! i, ti) ∈ rstep_r_p_s' ℛ (l, r) p σ"
shows "(fill_holes C ss, fill_holes C (ss[i := ti])) ∈ rstep_r_p_s' ℛ (l, r) (hole_poss' C ! i @ p) σ"
using rstep_r_p_s'_mono[OF assms(3), of "ctxt_of_pos_term (hole_poss' C ! i) (fill_holes C ss)"] assms(1,2)
hole_poss_in_poss_fill_holes[OF assms(1,2)]
by (simp add: replace_at_fill_holes)
lemma poss_mctxt_append_poss_mctxt:
"(p @ q) ∈ poss_mctxt C ⟷ p ∈ all_poss_mctxt C ∧ q ∈ poss_mctxt (subm_at C p)"
by (induct p arbitrary: C; case_tac C) auto
lemma hole_poss_fill_holes_mctxt:
assumes "num_holes C = length Ds"
shows "hole_poss (fill_holes_mctxt C Ds) = {hole_poss' C ! i @ q |i q. i < length Ds ∧ q ∈ hole_poss (Ds ! i)}"
(is "?L = ?R")
using assms
proof -
have "p ∈ ?L ⟹ p ∈ ?R" for p using assms
proof (induct C Ds arbitrary: p rule: fill_holes_induct)
case (MFun f Cs Ds)
obtain i p' where
*: "i < length Cs" "p = i # p'"
"p' ∈ hole_poss (fill_holes_mctxt (Cs ! i) (partition_holes Ds Cs ! i))"
using MFun(1,3) by (auto)
with MFun(2)[of i p'] obtain j q where
"j < length (partition_holes Ds Cs ! i)" "q ∈ hole_poss (partition_holes Ds Cs ! i ! j)"
"p' = hole_poss' (Cs ! i) ! j @ q" by auto
then show ?case
using MFun(1) * partition_by_nth_nth(1)[of "map num_holes Cs" "hole_poss' (MFun f Cs)" i j,
simplified, unfolded length_concat]
partition_by_concat_id[of "map (λi. map ((#) i) (hole_poss' (Cs ! i))) [0..<length Cs]"
"map num_holes Cs", simplified]
by (auto intro!: exI[of _ "partition_by_idx (sum_list (map num_holes Cs)) (map num_holes Cs) i j"] exI[of _ q]
simp: partition_by_nth_nth comp_def map_upt_len_conv)
qed auto
moreover have "p ∈ ?R ⟹ p ∈ ?L" for p using assms
proof (induct C Ds arbitrary: p rule: fill_holes_induct)
case (MFun f Cs Ds)
obtain i q where *: "i < length Ds" "q ∈ hole_poss (Ds ! i)"
"p = concat (map (λi. map ((#) i) (hole_poss' (Cs ! i))) [0..<length Cs]) ! i @ q"
using MFun(1,3) by auto
let ?i = "map num_holes Cs @⇩1 i" and ?j = "map num_holes Cs @⇩2 i"
have
"?i < length Cs" "?j < num_holes (Cs ! ?i)" "q ∈ hole_poss (partition_holes Ds Cs ! ?i ! ?j)"
"p = ?i # hole_poss' (Cs ! ?i) ! ?j @ q"
using partition_by_idx1_bound[of _ "map num_holes Cs"] * MFun(1)
partition_by_idx2_bound[of _ "map num_holes Cs"] nth_by_partition_by[of Ds "map num_holes Cs"]
nth_by_partition_by[of "hole_poss' (MFun f Cs)" "map num_holes Cs" i]
partition_by_concat_id[of "map (λi. map ((#) i) (hole_poss' (Cs ! i))) [0..<length Cs]"
"map num_holes Cs"]
by (auto simp: length_concat comp_def map_upt_len_conv )
then show ?case using MFun(1)
by (auto intro!: MFun(2)[of ?i "hole_poss' (Cs ! ?i) ! ?j @ q"] exI[of _ ?j] exI[of _ "q"])
qed auto
ultimately show ?thesis by blast
qed
lemma pos_diff_hole_possI:
"q ∈ hole_poss C ⟹ p ≤⇩p q ⟹ pos_diff q p ∈ hole_poss (subm_at C p)"
by (induct C p arbitrary: q rule: subm_at.induct) auto
lemma unfill_holes_conv:
assumes "C ≤ mctxt_of_term t"
shows "unfill_holes C t = map (subt_at t) (hole_poss' C)"
using assms
proof (induct C t rule: unfill_holes.induct)
case (3 f Cs g ts) show ?case using 3(2)
by (auto elim!: less_eq_mctxtE2 simp: map_concat comp_def 3(1) intro!: arg_cong[of _ _ concat])
qed (auto elim: less_eq_mctxtE2)
lemma unfill_holes_by_prefix:
assumes "C ≤ D" and "D ≤ mctxt_of_term t"
shows "unfill_holes D t = concat (map (λp. unfill_holes (subm_at D p) (subt_at t p)) (hole_poss' C))"
using assms
proof (induct C arbitrary: D t)
case (MVar x) then show ?case by (cases t) (auto elim!: less_eq_mctxtE1)
next
case (MFun f Cs)
obtain Ds where D[simp]: "D = MFun f Ds" "length Ds = length Cs" using MFun(2) by (auto elim: less_eq_mctxtE1)
obtain ts where t[simp]: "t = Fun f ts" "length ts = length Cs" using MFun(3) by (cases t) (auto elim: less_eq_mctxtE1)
have "i < length Cs ⟹ unfill_holes (Ds ! i) (ts ! i) =
concat (map (λp. unfill_holes (subm_at (Ds ! i) p) (subt_at (ts ! i) p)) (hole_poss' (Cs ! i)))" for i
proof (intro MFun(1))
assume "i < length Cs" then show "Cs ! i ≤ Ds ! i" using MFun(2) by (auto elim: less_eq_mctxtE1)
next
assume "i < length Cs" then show "Ds ! i ≤ mctxt_of_term (ts ! i)" using MFun(3)
by (auto elim: less_eq_mctxt_MFunE1)
qed auto
then have *: "map (λi. unfill_holes (Ds ! i) (ts ! i)) [0..<length Cs] =
map (concat ∘ map (λp. unfill_holes (subm_at (MFun f Ds) p) (Fun f ts |_ p)) ∘
(λi. map ((#) i) (hole_poss' (Cs ! i)))) [0..<length Cs]"
by (intro nth_equalityI) (auto simp: o_def)
then show ?case by (auto simp add: map_concat map_map[symmetric] simp del: map_map)
qed auto
lemma unfill_holes_mctxt_conv:
assumes "C ≤ D"
shows "unfill_holes_mctxt C D = map (subm_at D) (hole_poss' C)"
using assms
proof (induct C D rule: unfill_holes_mctxt.induct)
case (3 f Cs g Ds) show ?case using 3(2)
by (auto elim!: less_eq_mctxtE2 simp: map_concat comp_def 3(1) intro!: arg_cong[of _ _ concat])
qed (auto elim: less_eq_mctxtE2)
lemma map_vars_Some_le_mctxt_of_term_mctxt_term_conv:
"map_vars_mctxt Some C ≤ mctxt_of_term (mctxt_term_conv C)"
by (induct C) (auto intro: less_eq_mctxtI1)
lemma unfill_holes_map_vars_mctxt_Some_mctxt_term_conv_conv:
"C ≤ E ⟹ unfill_holes (map_vars_mctxt Some C) (mctxt_term_conv E) = map mctxt_term_conv (unfill_holes_mctxt C E)"
by (induct C E rule: less_eq_mctxt_induct) (auto simp: map_concat intro!: arg_cong[of _ _ concat])
lemma unfill_holes_mctxt_by_prefix':
assumes "num_holes C = length Ds" "fill_holes_mctxt C Ds ≤ E"
shows "unfill_holes_mctxt (fill_holes_mctxt C Ds) E = concat (map (λ(D, E). unfill_holes_mctxt D E) (zip Ds (unfill_holes_mctxt C E)))"
proof -
have "C ≤ E" using assms(2) fill_holes_mctxt_suffix[OF assms(1)[symmetric]] by auto
have [simp]: "i < length Ds ⟹ Ds ! i ≤ unfill_holes_mctxt C E ! i" for i using assms
by (subst (asm) fill_unfill_holes_mctxt[OF ‹C ≤ E›, symmetric])
(auto simp: less_eq_fill_holes_iff ‹C ≤ E›)
show ?thesis using ‹C ≤ E› assms
arg_cong[OF unfill_holes_by_prefix'[of "map_vars_mctxt Some C" "map (map_vars_mctxt Some) Ds" "mctxt_term_conv E"], of "map term_mctxt_conv"]
order.trans[OF map_vars_mctxt_mono[OF assms(2), of Some] map_vars_Some_le_mctxt_of_term_mctxt_term_conv[of E]]
unfolding map_vars_mctxt_fill_holes_mctxt[symmetric, OF assms(1)]
by (auto simp: zip_map1 zip_map2 comp_def unfill_holes_map_vars_mctxt_Some_mctxt_term_conv_conv
prod.case_distrib map_concat in_set_conv_nth intro!: arg_cong[of _ _ concat])
qed
lemma hole_poss_fill_holes_mctxt_conv:
assumes "i < num_holes C" "length Cs = num_holes C"
shows "hole_poss' C ! i ∈ hole_poss (fill_holes_mctxt C Cs) ⟷ Cs ! i = MHole" (is "?L ⟷ ?R")
proof
assume ?L then show ?R
using assms arg_cong[OF unfill_holes_mctxt_conv[of C "fill_holes_mctxt C Cs"], of "λCs. Cs ! i"]
by (auto simp: unfill_fill_holes_mctxt)
next
assume ?R then show ?L using assms by (force simp: hole_poss_fill_holes_mctxt)
qed
end